具有时间尺度层次的随机化学反应网络分析

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Lucie Laurence, Philippe Robert
{"title":"具有时间尺度层次的随机化学反应网络分析","authors":"Lucie Laurence,&nbsp;Philippe Robert","doi":"10.1007/s10955-025-03428-7","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate a class of stochastic chemical reaction networks with <span>\\(n{\\ge }1\\)</span> chemical species <span>\\(S_1\\)</span>, ..., <span>\\(S_n\\)</span>, and whose complexes are only of the form <span>\\(k_iS_i\\)</span>, <span>\\(i{=}1\\)</span>,..., <i>n</i>, where <span>\\((k_i)\\)</span> are integers. The time evolution of these CRNs is driven by the kinetics of the law of mass action. A scaling analysis is done when the rates of external arrivals of chemical species are proportional to a large scaling parameter <i>N</i>. A natural hierarchy of fast processes, a subset of the coordinates of <span>\\((X_i(t))\\)</span>, is determined by the values of the mapping <span>\\(i{\\mapsto }k_i\\)</span>. We show that the scaled vector of coordinates <i>i</i> such that <span>\\(k_i{=}1\\)</span> and the scaled occupation measure of the other coordinates are converging in distribution to a deterministic limit as <i>N</i> gets large. The proof of this result is obtained by establishing a functional equation for the limiting points of the occupation measure, by an induction on the hierarchy of timescales and with relative entropy functions.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Stochastic Chemical Reaction Networks with a Hierarchy of Timescales\",\"authors\":\"Lucie Laurence,&nbsp;Philippe Robert\",\"doi\":\"10.1007/s10955-025-03428-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate a class of stochastic chemical reaction networks with <span>\\\\(n{\\\\ge }1\\\\)</span> chemical species <span>\\\\(S_1\\\\)</span>, ..., <span>\\\\(S_n\\\\)</span>, and whose complexes are only of the form <span>\\\\(k_iS_i\\\\)</span>, <span>\\\\(i{=}1\\\\)</span>,..., <i>n</i>, where <span>\\\\((k_i)\\\\)</span> are integers. The time evolution of these CRNs is driven by the kinetics of the law of mass action. A scaling analysis is done when the rates of external arrivals of chemical species are proportional to a large scaling parameter <i>N</i>. A natural hierarchy of fast processes, a subset of the coordinates of <span>\\\\((X_i(t))\\\\)</span>, is determined by the values of the mapping <span>\\\\(i{\\\\mapsto }k_i\\\\)</span>. We show that the scaled vector of coordinates <i>i</i> such that <span>\\\\(k_i{=}1\\\\)</span> and the scaled occupation measure of the other coordinates are converging in distribution to a deterministic limit as <i>N</i> gets large. The proof of this result is obtained by establishing a functional equation for the limiting points of the occupation measure, by an induction on the hierarchy of timescales and with relative entropy functions.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03428-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03428-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一类具有\(n{\ge }1\)化学物质\(S_1\),…的随机化学反应网络。, \(S_n\),其复合物的形式只有\(k_iS_i\), \(i{=}1\),…, n,其中\((k_i)\)为整数。这些crn的时间演化是由质量作用定律的动力学驱动的。当化学物质的外部到达率与较大的标度参数n成比例时,进行标度分析。快速过程的自然层次结构,即\((X_i(t))\)坐标的子集,由映射\(i{\mapsto }k_i\)的值决定。我们证明了坐标i的缩放向量使得\(k_i{=}1\)和其他坐标的缩放的占用度量随着N的增大在分布上收敛到一个确定的极限。通过建立占用测度极限点的泛函方程,对时间尺度的层次进行归纳,并利用相对熵函数证明了这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Stochastic Chemical Reaction Networks with a Hierarchy of Timescales

Analysis of Stochastic Chemical Reaction Networks with a Hierarchy of Timescales

We investigate a class of stochastic chemical reaction networks with \(n{\ge }1\) chemical species \(S_1\), ..., \(S_n\), and whose complexes are only of the form \(k_iS_i\), \(i{=}1\),..., n, where \((k_i)\) are integers. The time evolution of these CRNs is driven by the kinetics of the law of mass action. A scaling analysis is done when the rates of external arrivals of chemical species are proportional to a large scaling parameter N. A natural hierarchy of fast processes, a subset of the coordinates of \((X_i(t))\), is determined by the values of the mapping \(i{\mapsto }k_i\). We show that the scaled vector of coordinates i such that \(k_i{=}1\) and the scaled occupation measure of the other coordinates are converging in distribution to a deterministic limit as N gets large. The proof of this result is obtained by establishing a functional equation for the limiting points of the occupation measure, by an induction on the hierarchy of timescales and with relative entropy functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信