基于精细和粗糙标注的半监督乳腺MRI密度分割

Tianyu Xie;Yue Sun;Hongxu Yang;Shuo Li;Jinhong Song;Qimin Yang;Hao Chen;Mingxiang Wu;Tao Tan
{"title":"基于精细和粗糙标注的半监督乳腺MRI密度分割","authors":"Tianyu Xie;Yue Sun;Hongxu Yang;Shuo Li;Jinhong Song;Qimin Yang;Hao Chen;Mingxiang Wu;Tao Tan","doi":"10.1109/TAI.2024.3491693","DOIUrl":null,"url":null,"abstract":"This article introduces an enhanced teacher–student model featuring a novel Vnet architecture that integrates high-pass and low-pass filters to improve the segmentation of breast magnetic resonance imaging (MRI) images. The model effectively utilizes finely annotated, roughly annotated, and unannotated data to achieve precise breast tissue density segmentation. The teacher–student framework incorporates three specialized Vnet networks, each tailored to different types of annotations. By integrating cosine contrast loss functions between finely and roughly annotated models, and innovatively applying high-pass and low-pass filters within the Vnet architecture, the segmentation performance is significantly enhanced. This hybrid filtering approach enables the model to capture both fine-grained and coarse structural details, leading to more accurate segmentation across various MRI image datasets. Experimental results demonstrate the superiority of the proposed method, achieving Dice values of 0.833 on the finely annotated Shenzhen dataset and 0.780 on the Duke dataset, using 15 finely annotated, 15 roughly annotated, and 58 unlabeled samples provided by Shenzhen People's Hospital. These findings underscore its potential clinical application in breast density assessment.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 3","pages":"690-699"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semisupervised Breast MRI Density Segmentation Integrating Fine and Rough Annotations\",\"authors\":\"Tianyu Xie;Yue Sun;Hongxu Yang;Shuo Li;Jinhong Song;Qimin Yang;Hao Chen;Mingxiang Wu;Tao Tan\",\"doi\":\"10.1109/TAI.2024.3491693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces an enhanced teacher–student model featuring a novel Vnet architecture that integrates high-pass and low-pass filters to improve the segmentation of breast magnetic resonance imaging (MRI) images. The model effectively utilizes finely annotated, roughly annotated, and unannotated data to achieve precise breast tissue density segmentation. The teacher–student framework incorporates three specialized Vnet networks, each tailored to different types of annotations. By integrating cosine contrast loss functions between finely and roughly annotated models, and innovatively applying high-pass and low-pass filters within the Vnet architecture, the segmentation performance is significantly enhanced. This hybrid filtering approach enables the model to capture both fine-grained and coarse structural details, leading to more accurate segmentation across various MRI image datasets. Experimental results demonstrate the superiority of the proposed method, achieving Dice values of 0.833 on the finely annotated Shenzhen dataset and 0.780 on the Duke dataset, using 15 finely annotated, 15 roughly annotated, and 58 unlabeled samples provided by Shenzhen People's Hospital. These findings underscore its potential clinical application in breast density assessment.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"6 3\",\"pages\":\"690-699\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750144/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750144/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种增强的师生模型,该模型采用新颖的Vnet架构,集成了高通和低通滤波器,以改善乳房磁共振成像(MRI)图像的分割。该模型有效地利用精细标注、粗略标注和未标注的数据实现乳腺组织密度的精确分割。师生框架结合了三个专门的Vnet网络,每个网络都针对不同类型的注释进行了定制。通过整合精细和粗略标注模型之间的余弦对比度损失函数,并在Vnet架构中创新地应用高通和低通滤波器,显著提高了分割性能。这种混合滤波方法使模型能够捕获细粒度和粗粒度的结构细节,从而在各种MRI图像数据集之间实现更准确的分割。实验结果证明了该方法的优越性,使用深圳市人民医院提供的15个精细标注样本、15个粗略标注样本和58个未标注样本,在精细标注的深圳数据集上的Dice值为0.833,在杜克数据集上的Dice值为0.780。这些发现强调了其在乳腺密度评估中的潜在临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semisupervised Breast MRI Density Segmentation Integrating Fine and Rough Annotations
This article introduces an enhanced teacher–student model featuring a novel Vnet architecture that integrates high-pass and low-pass filters to improve the segmentation of breast magnetic resonance imaging (MRI) images. The model effectively utilizes finely annotated, roughly annotated, and unannotated data to achieve precise breast tissue density segmentation. The teacher–student framework incorporates three specialized Vnet networks, each tailored to different types of annotations. By integrating cosine contrast loss functions between finely and roughly annotated models, and innovatively applying high-pass and low-pass filters within the Vnet architecture, the segmentation performance is significantly enhanced. This hybrid filtering approach enables the model to capture both fine-grained and coarse structural details, leading to more accurate segmentation across various MRI image datasets. Experimental results demonstrate the superiority of the proposed method, achieving Dice values of 0.833 on the finely annotated Shenzhen dataset and 0.780 on the Duke dataset, using 15 finely annotated, 15 roughly annotated, and 58 unlabeled samples provided by Shenzhen People's Hospital. These findings underscore its potential clinical application in breast density assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信