ce掺杂Fe2P/NiCoP杂化物在阴离子交换膜电解中安培级析氧的动态重构

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fan Zhang, Ke Wang, Hui Zhang, Shiliu Yang, Mai Xu, Yi He, Lecheng Lei, Pengfei Xie, Xingwang Zhang
{"title":"ce掺杂Fe2P/NiCoP杂化物在阴离子交换膜电解中安培级析氧的动态重构","authors":"Fan Zhang,&nbsp;Ke Wang,&nbsp;Hui Zhang,&nbsp;Shiliu Yang,&nbsp;Mai Xu,&nbsp;Yi He,&nbsp;Lecheng Lei,&nbsp;Pengfei Xie,&nbsp;Xingwang Zhang","doi":"10.1002/adfm.202500861","DOIUrl":null,"url":null,"abstract":"<p>The sluggish kinetics of the oxygen evolution reaction (OER) critically limit the efficiency of anion exchange membrane water electrolysis (AEMWE). Herein, a Ce-doped bimetallic Fe<sub>2</sub>P/NiCoP hybrid pre-catalyst that undergoes dynamic reconstruction to activate a highly efficient OER pathway is designed. The optimized Ce<sub>0.1</sub>-Fe<sub>2</sub>P/NiCoP exhibits an impressively low overpotential of 280 mV at 0.5 A cm<sup>−2</sup> and a small Tafel slope of 55.3 mV dec<sup>−1</sup> in a 1.0 M KOH. Remarkably, when integrated as the anode in an AEMWE electrolyzer, it delivers a low cell voltage of 1.812 V at 1.0 A cm<sup>−2</sup> and maintains stable performance for over 500 h at 60 °C. In situ characterizations and density functional theory (DFT) calculations reveal that Ce-doping enhances surface reconstruction and modulates the electronic structure, thereby reducing energy barriers for intermediates (Δ<i>G</i><sub>*OH</sub> and Δ<i>G</i><sub>*OOH</sub>) formation and accelerating OER kinetics. This work introduces a novel strategy to utilize catalyst reconstruction, advancing their applications in AEMWE systems.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 31","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Reconstruction of Ce-Doped Fe2P/NiCoP Hybrid for Ampere-Level Oxygen Evolution in Anion Exchange Membrane Water Electrolysis\",\"authors\":\"Fan Zhang,&nbsp;Ke Wang,&nbsp;Hui Zhang,&nbsp;Shiliu Yang,&nbsp;Mai Xu,&nbsp;Yi He,&nbsp;Lecheng Lei,&nbsp;Pengfei Xie,&nbsp;Xingwang Zhang\",\"doi\":\"10.1002/adfm.202500861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The sluggish kinetics of the oxygen evolution reaction (OER) critically limit the efficiency of anion exchange membrane water electrolysis (AEMWE). Herein, a Ce-doped bimetallic Fe<sub>2</sub>P/NiCoP hybrid pre-catalyst that undergoes dynamic reconstruction to activate a highly efficient OER pathway is designed. The optimized Ce<sub>0.1</sub>-Fe<sub>2</sub>P/NiCoP exhibits an impressively low overpotential of 280 mV at 0.5 A cm<sup>−2</sup> and a small Tafel slope of 55.3 mV dec<sup>−1</sup> in a 1.0 M KOH. Remarkably, when integrated as the anode in an AEMWE electrolyzer, it delivers a low cell voltage of 1.812 V at 1.0 A cm<sup>−2</sup> and maintains stable performance for over 500 h at 60 °C. In situ characterizations and density functional theory (DFT) calculations reveal that Ce-doping enhances surface reconstruction and modulates the electronic structure, thereby reducing energy barriers for intermediates (Δ<i>G</i><sub>*OH</sub> and Δ<i>G</i><sub>*OOH</sub>) formation and accelerating OER kinetics. This work introduces a novel strategy to utilize catalyst reconstruction, advancing their applications in AEMWE systems.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 31\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202500861\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202500861","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

析氧反应(OER)动力学迟缓严重限制了阴离子交换膜电解(AEMWE)的效率。本文设计了一种掺铈双金属Fe2P/NiCoP杂化预催化剂,通过动态重构激活高效OER通路。优化后的Ce0.1-Fe2P/NiCoP在0.5 A cm−2下的过电位为280 mV,在1.0 M KOH下的Tafel斜率很小,为55.3 mV dec−1。值得注意的是,当作为阳极集成在AEMWE电解槽中时,它在1.0 a cm - 2时提供1.812 V的低电池电压,并在60°C下保持500小时以上的稳定性能。原位表征和密度泛函理论(DFT)计算表明,ce掺杂增强了表面重建并调节了电子结构,从而降低了中间体(ΔG*OH和ΔG*OOH)形成的能垒,加速了OER动力学。本文介绍了一种利用催化剂改造的新策略,促进了其在AEMWE系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic Reconstruction of Ce-Doped Fe2P/NiCoP Hybrid for Ampere-Level Oxygen Evolution in Anion Exchange Membrane Water Electrolysis

Dynamic Reconstruction of Ce-Doped Fe2P/NiCoP Hybrid for Ampere-Level Oxygen Evolution in Anion Exchange Membrane Water Electrolysis

Dynamic Reconstruction of Ce-Doped Fe2P/NiCoP Hybrid for Ampere-Level Oxygen Evolution in Anion Exchange Membrane Water Electrolysis

Dynamic Reconstruction of Ce-Doped Fe2P/NiCoP Hybrid for Ampere-Level Oxygen Evolution in Anion Exchange Membrane Water Electrolysis

Dynamic Reconstruction of Ce-Doped Fe2P/NiCoP Hybrid for Ampere-Level Oxygen Evolution in Anion Exchange Membrane Water Electrolysis

The sluggish kinetics of the oxygen evolution reaction (OER) critically limit the efficiency of anion exchange membrane water electrolysis (AEMWE). Herein, a Ce-doped bimetallic Fe2P/NiCoP hybrid pre-catalyst that undergoes dynamic reconstruction to activate a highly efficient OER pathway is designed. The optimized Ce0.1-Fe2P/NiCoP exhibits an impressively low overpotential of 280 mV at 0.5 A cm−2 and a small Tafel slope of 55.3 mV dec−1 in a 1.0 M KOH. Remarkably, when integrated as the anode in an AEMWE electrolyzer, it delivers a low cell voltage of 1.812 V at 1.0 A cm−2 and maintains stable performance for over 500 h at 60 °C. In situ characterizations and density functional theory (DFT) calculations reveal that Ce-doping enhances surface reconstruction and modulates the electronic structure, thereby reducing energy barriers for intermediates (ΔG*OH and ΔG*OOH) formation and accelerating OER kinetics. This work introduces a novel strategy to utilize catalyst reconstruction, advancing their applications in AEMWE systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信