Wei Deng, Lijun Liu, Xiaohang Li, Yanyu Huang, Ming Hu, Yafang Zheng, Yuan Yin, Yan Huan, Shuxun Cui, Zhaoyan Sun, Jun Jiang, Xiaoniu Yang, Dapeng Wang
{"title":"基于机器学习的橡胶复合材料试错优化研究","authors":"Wei Deng, Lijun Liu, Xiaohang Li, Yanyu Huang, Ming Hu, Yafang Zheng, Yuan Yin, Yan Huan, Shuxun Cui, Zhaoyan Sun, Jun Jiang, Xiaoniu Yang, Dapeng Wang","doi":"10.1002/adma.202407763","DOIUrl":null,"url":null,"abstract":"<p>The traditional trial-and-error approach, although effective, is inefficient for optimizing rubber composites. The latest developments in machine learning (ML)-assisted methodologies are also not suitable for predicting and optimizing rubber composite properties. This is due to the dependency of the properties on processing conditions, which prevents the alignment of data collected from different sources. In this work, a novel workflow called the ML-enhanced trial-and-error approach is proposed. This approach integrates orthogonal experimental design with symbolic regression (SR) to effectively extract empirical principles. This combination enables the optimization process to retain the characteristics of the traditional trial-and-error approach while significantly improving efficiency and capability. Using rubber composites as the model system, the ML-enhanced trial-and-error approach effectively extracts empirical principles encapsulated by high-frequency terms in the SR-derived mathematical formulas, offering clear guidance for material property optimization. An online platform has been developed that allows for no-code usage of the proposed methodology, designed to seamlessly integrate into the existing experimental optimization process.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 16","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning-Enhanced Trial-and-Error for Efficient Optimization of Rubber Composites\",\"authors\":\"Wei Deng, Lijun Liu, Xiaohang Li, Yanyu Huang, Ming Hu, Yafang Zheng, Yuan Yin, Yan Huan, Shuxun Cui, Zhaoyan Sun, Jun Jiang, Xiaoniu Yang, Dapeng Wang\",\"doi\":\"10.1002/adma.202407763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The traditional trial-and-error approach, although effective, is inefficient for optimizing rubber composites. The latest developments in machine learning (ML)-assisted methodologies are also not suitable for predicting and optimizing rubber composite properties. This is due to the dependency of the properties on processing conditions, which prevents the alignment of data collected from different sources. In this work, a novel workflow called the ML-enhanced trial-and-error approach is proposed. This approach integrates orthogonal experimental design with symbolic regression (SR) to effectively extract empirical principles. This combination enables the optimization process to retain the characteristics of the traditional trial-and-error approach while significantly improving efficiency and capability. Using rubber composites as the model system, the ML-enhanced trial-and-error approach effectively extracts empirical principles encapsulated by high-frequency terms in the SR-derived mathematical formulas, offering clear guidance for material property optimization. An online platform has been developed that allows for no-code usage of the proposed methodology, designed to seamlessly integrate into the existing experimental optimization process.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 16\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407763\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407763","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine-Learning-Enhanced Trial-and-Error for Efficient Optimization of Rubber Composites
The traditional trial-and-error approach, although effective, is inefficient for optimizing rubber composites. The latest developments in machine learning (ML)-assisted methodologies are also not suitable for predicting and optimizing rubber composite properties. This is due to the dependency of the properties on processing conditions, which prevents the alignment of data collected from different sources. In this work, a novel workflow called the ML-enhanced trial-and-error approach is proposed. This approach integrates orthogonal experimental design with symbolic regression (SR) to effectively extract empirical principles. This combination enables the optimization process to retain the characteristics of the traditional trial-and-error approach while significantly improving efficiency and capability. Using rubber composites as the model system, the ML-enhanced trial-and-error approach effectively extracts empirical principles encapsulated by high-frequency terms in the SR-derived mathematical formulas, offering clear guidance for material property optimization. An online platform has been developed that allows for no-code usage of the proposed methodology, designed to seamlessly integrate into the existing experimental optimization process.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.