流动下电化学转换的印刷-板结构电极

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dylan M. Barber, Sofía Edgar, Michael S. Emanuel, Michael D. Nelwood, Bok Yeop Ahn, Benito Román-Manso, Thomas Cochard, Justin Platero, Kiana Amini, Chris H. Rycroft, Shmuel Rubinstein, Michael J. Aziz, Jennifer A. Lewis
{"title":"流动下电化学转换的印刷-板结构电极","authors":"Dylan M. Barber,&nbsp;Sofía Edgar,&nbsp;Michael S. Emanuel,&nbsp;Michael D. Nelwood,&nbsp;Bok Yeop Ahn,&nbsp;Benito Román-Manso,&nbsp;Thomas Cochard,&nbsp;Justin Platero,&nbsp;Kiana Amini,&nbsp;Chris H. Rycroft,&nbsp;Shmuel Rubinstein,&nbsp;Michael J. Aziz,&nbsp;Jennifer A. Lewis","doi":"10.1002/adfm.202419748","DOIUrl":null,"url":null,"abstract":"<p>Flow cell electrodes are typically composed of porous carbon materials, such as papers, felts, and cloths. However, their random architecture hinders the fundamental characterization of electrode structure-performance relationships during in situ operation of porous electrochemical flow systems. This work describes a “print-and-plate” method that combines direct ink writing of micro-periodic lattices with a two-step metal plating process that converts them into highly conductive (sheet resistance 40 mΩ sq<sup>−1</sup>) electrodes. Their <i>operando</i> performance is assessed in an anthraquinone disulfonic acid half-cell using widefield electrochemical fluorescence microscopy, where output current and fluorescence intensity are in excellent agreement. The pressure drop associated with flow through three electrode designs is determined via simulations from which the most efficient design is identified and manufactured via print-and-plate. Confocal fluorescence microscopy is then used to create a 3D map of the state of charge (SOC) inside this print-and-plate electrode. The experimental state of the charge map is in good agreement with computational predictions. The rapid design, simulation, and fabrication of print-and-plate electrodes enable fundamental investigations of how architected porosity affects electrochemical performance under flow.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 34","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202419748","citationCount":"0","resultStr":"{\"title\":\"Print-and-Plate Architected Electrodes for Electrochemical Transformations Under Flow\",\"authors\":\"Dylan M. Barber,&nbsp;Sofía Edgar,&nbsp;Michael S. Emanuel,&nbsp;Michael D. Nelwood,&nbsp;Bok Yeop Ahn,&nbsp;Benito Román-Manso,&nbsp;Thomas Cochard,&nbsp;Justin Platero,&nbsp;Kiana Amini,&nbsp;Chris H. Rycroft,&nbsp;Shmuel Rubinstein,&nbsp;Michael J. Aziz,&nbsp;Jennifer A. Lewis\",\"doi\":\"10.1002/adfm.202419748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flow cell electrodes are typically composed of porous carbon materials, such as papers, felts, and cloths. However, their random architecture hinders the fundamental characterization of electrode structure-performance relationships during in situ operation of porous electrochemical flow systems. This work describes a “print-and-plate” method that combines direct ink writing of micro-periodic lattices with a two-step metal plating process that converts them into highly conductive (sheet resistance 40 mΩ sq<sup>−1</sup>) electrodes. Their <i>operando</i> performance is assessed in an anthraquinone disulfonic acid half-cell using widefield electrochemical fluorescence microscopy, where output current and fluorescence intensity are in excellent agreement. The pressure drop associated with flow through three electrode designs is determined via simulations from which the most efficient design is identified and manufactured via print-and-plate. Confocal fluorescence microscopy is then used to create a 3D map of the state of charge (SOC) inside this print-and-plate electrode. The experimental state of the charge map is in good agreement with computational predictions. The rapid design, simulation, and fabrication of print-and-plate electrodes enable fundamental investigations of how architected porosity affects electrochemical performance under flow.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 34\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202419748\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202419748\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202419748","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

流动电池电极通常由多孔碳材料组成,如纸、毡和布。然而,它们的随机结构阻碍了在多孔电化学流动系统的原位操作过程中电极结构-性能关系的基本表征。这项工作描述了一种“印刷-制版”方法,将微周期晶格的直接墨水书写与两步金属电镀工艺相结合,将其转化为高导电性(片电阻40 mΩ sq−1)电极。使用宽视场电化学荧光显微镜在蒽醌二磺酸半电池中评估其operando性能,其中输出电流和荧光强度非常一致。通过模拟确定了三种电极设计中与流量相关的压降,从中确定了最有效的设计,并通过印刷-板制造。然后使用共聚焦荧光显微镜创建3D地图的电荷状态(SOC)在这个打印和板电极。电荷图的实验状态与计算结果吻合较好。印刷-板电极的快速设计、模拟和制造使得研究结构孔隙度如何影响流动条件下的电化学性能成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Print-and-Plate Architected Electrodes for Electrochemical Transformations Under Flow

Print-and-Plate Architected Electrodes for Electrochemical Transformations Under Flow

Print-and-Plate Architected Electrodes for Electrochemical Transformations Under Flow

Print-and-Plate Architected Electrodes for Electrochemical Transformations Under Flow

Print-and-Plate Architected Electrodes for Electrochemical Transformations Under Flow

Print-and-Plate Architected Electrodes for Electrochemical Transformations Under Flow

Flow cell electrodes are typically composed of porous carbon materials, such as papers, felts, and cloths. However, their random architecture hinders the fundamental characterization of electrode structure-performance relationships during in situ operation of porous electrochemical flow systems. This work describes a “print-and-plate” method that combines direct ink writing of micro-periodic lattices with a two-step metal plating process that converts them into highly conductive (sheet resistance 40 mΩ sq−1) electrodes. Their operando performance is assessed in an anthraquinone disulfonic acid half-cell using widefield electrochemical fluorescence microscopy, where output current and fluorescence intensity are in excellent agreement. The pressure drop associated with flow through three electrode designs is determined via simulations from which the most efficient design is identified and manufactured via print-and-plate. Confocal fluorescence microscopy is then used to create a 3D map of the state of charge (SOC) inside this print-and-plate electrode. The experimental state of the charge map is in good agreement with computational predictions. The rapid design, simulation, and fabrication of print-and-plate electrodes enable fundamental investigations of how architected porosity affects electrochemical performance under flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信