伪太阳风对LISA探路者加速噪声的影响

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Arnold Tianyi Yang, Indie Desiderio-Sloane and Grant David Meadors
{"title":"伪太阳风对LISA探路者加速噪声的影响","authors":"Arnold Tianyi Yang, Indie Desiderio-Sloane and Grant David Meadors","doi":"10.1088/1361-6382/adb538","DOIUrl":null,"url":null,"abstract":"Spurious solar-wind effects are a potential noise source in future Laser Interferometer Space Antenna (LISA) measurements. One noise coupling mechanism is constrained by estimating solar-wind effects on acceleration noise in LISA Pathfinder (LPF). While LISA is designed for drag-free differential measurement, predicting the realistic impact both bounds the operational environment and assesses whether LISA could provide serendipitous space-weather observations. Data from NASA’s Advanced Composition Explorer (ACE), situated at the L1 Lagrange point, serves as a reliable source of solar-wind data. The data sets are compared over the 114 d time period from 1 March 2016 to 23 June 2016. This period gives the longest readily-available open data set, without interference from other commissioning activities. To evaluate space weather effects, the data from both satellites are formatted, gap-filled/interpolated, and fast-Fourier transformed for amplitude spectral density and coherence comparisons. Solar wind effects are not seen in a coherence plot between LPF and ACE; modest coherence in the planned LISA observational frequency band can be attributed to chance. This result indicates that measurable correlation due to solar-wind acceleration noise over 3 month timescales will be a negligible noise source. LISA is unlikely to inform solar wind measurements routinely. Another source of noise from the Sun, solar radiation pressure, is estimated to impart greater acceleration noise, but has yet to be analyzed.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"2 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spurious solar-wind effects on acceleration noise in LISA Pathfinder\",\"authors\":\"Arnold Tianyi Yang, Indie Desiderio-Sloane and Grant David Meadors\",\"doi\":\"10.1088/1361-6382/adb538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spurious solar-wind effects are a potential noise source in future Laser Interferometer Space Antenna (LISA) measurements. One noise coupling mechanism is constrained by estimating solar-wind effects on acceleration noise in LISA Pathfinder (LPF). While LISA is designed for drag-free differential measurement, predicting the realistic impact both bounds the operational environment and assesses whether LISA could provide serendipitous space-weather observations. Data from NASA’s Advanced Composition Explorer (ACE), situated at the L1 Lagrange point, serves as a reliable source of solar-wind data. The data sets are compared over the 114 d time period from 1 March 2016 to 23 June 2016. This period gives the longest readily-available open data set, without interference from other commissioning activities. To evaluate space weather effects, the data from both satellites are formatted, gap-filled/interpolated, and fast-Fourier transformed for amplitude spectral density and coherence comparisons. Solar wind effects are not seen in a coherence plot between LPF and ACE; modest coherence in the planned LISA observational frequency band can be attributed to chance. This result indicates that measurable correlation due to solar-wind acceleration noise over 3 month timescales will be a negligible noise source. LISA is unlikely to inform solar wind measurements routinely. Another source of noise from the Sun, solar radiation pressure, is estimated to impart greater acceleration noise, but has yet to be analyzed.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/adb538\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adb538","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

伪太阳风效应是未来激光干涉仪空间天线(LISA)测量中的一个潜在噪声源。通过估算太阳风对LISA探路者(LPF)加速噪声的影响,约束了一种噪声耦合机制。虽然LISA是为无阻力差分测量而设计的,但预测实际影响既限制了操作环境,也评估了LISA是否可以提供偶然的空间天气观测。位于拉格朗日点L1的美国宇航局高级成分探测器(ACE)提供的数据是太阳风数据的可靠来源。对2016年3月1日至2016年6月23日的114 d时间内的数据集进行了比较。这段时间提供了最长的开放数据集,不受其他调试活动的干扰。为了评估空间天气的影响,对两颗卫星的数据进行了格式化、空白填充/插值,并进行了快速傅立叶变换,用于幅度、频谱密度和相干性比较。在LPF和ACE之间的相干图中没有看到太阳风效应;计划中的LISA观测频带的适度相干性可以归因于偶然。这一结果表明,在3个月的时间尺度上,太阳风加速度噪声的可测量相关性将是一个可以忽略不计的噪声源。LISA不太可能提供常规的太阳风测量信息。另一个来自太阳的噪音来源,太阳辐射压力,估计会产生更大的加速度噪音,但还没有被分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spurious solar-wind effects on acceleration noise in LISA Pathfinder
Spurious solar-wind effects are a potential noise source in future Laser Interferometer Space Antenna (LISA) measurements. One noise coupling mechanism is constrained by estimating solar-wind effects on acceleration noise in LISA Pathfinder (LPF). While LISA is designed for drag-free differential measurement, predicting the realistic impact both bounds the operational environment and assesses whether LISA could provide serendipitous space-weather observations. Data from NASA’s Advanced Composition Explorer (ACE), situated at the L1 Lagrange point, serves as a reliable source of solar-wind data. The data sets are compared over the 114 d time period from 1 March 2016 to 23 June 2016. This period gives the longest readily-available open data set, without interference from other commissioning activities. To evaluate space weather effects, the data from both satellites are formatted, gap-filled/interpolated, and fast-Fourier transformed for amplitude spectral density and coherence comparisons. Solar wind effects are not seen in a coherence plot between LPF and ACE; modest coherence in the planned LISA observational frequency band can be attributed to chance. This result indicates that measurable correlation due to solar-wind acceleration noise over 3 month timescales will be a negligible noise source. LISA is unlikely to inform solar wind measurements routinely. Another source of noise from the Sun, solar radiation pressure, is estimated to impart greater acceleration noise, but has yet to be analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信