梯度全纳米结构气凝胶纤维增强隔热和机械性能

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiaotong Fu, Lianmeng Si, Zhaoxin Zhang, Tingting Yang, Qichun Feng, Jianwei Song, Shuze Zhu, Dongdong Ye
{"title":"梯度全纳米结构气凝胶纤维增强隔热和机械性能","authors":"Xiaotong Fu, Lianmeng Si, Zhaoxin Zhang, Tingting Yang, Qichun Feng, Jianwei Song, Shuze Zhu, Dongdong Ye","doi":"10.1038/s41467-025-57646-4","DOIUrl":null,"url":null,"abstract":"<p>Lightweight, nanoporous aerogel fibers are crucial for personal thermal management and specialized heat protection. However, wet-spinning methods, exemplified by aramid aerogels, inevitably form a dense outer layer, significantly reducing the volume fraction of efficient thermal barrier nanovoids and limiting the development of ultimate thermal resistance in fibers. Herein, we develop a microfluidic spinning method to prepare gradient all-nanostructure aramid aerogel fibers (GAFs). Benefiting from the simultaneous shear alignment and diffusion dilution of a good solvent within the channels, the precursor gel fibers assemble into a structure with a sparse exterior and dense interior, which reverses during supercritical drying to form sheath and core layers with average pore diameters of 150 nm and 600 nm, respectively. Experiments and simulations reveal that the gradient nanostructure creates high interfacial thermal resistance at heat transfer interfaces, resulting in a radial thermal conductivity as low as 0.0228 W m<sup>–1</sup> K<sup>–1</sup>, far below that of air and wet-spun aerogel fibers. Moreover, GAF’s unique nano-entangled network efficiently dissipates stress, achieving exceptionally high tensile strength (29.5 MPa) and fracture strain (39.2%). This work establishes a correlation between multiscale nanostructures and superlative performance, thereby expanding the scope of aerogel applications in intricate environments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"158 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties\",\"authors\":\"Xiaotong Fu, Lianmeng Si, Zhaoxin Zhang, Tingting Yang, Qichun Feng, Jianwei Song, Shuze Zhu, Dongdong Ye\",\"doi\":\"10.1038/s41467-025-57646-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lightweight, nanoporous aerogel fibers are crucial for personal thermal management and specialized heat protection. However, wet-spinning methods, exemplified by aramid aerogels, inevitably form a dense outer layer, significantly reducing the volume fraction of efficient thermal barrier nanovoids and limiting the development of ultimate thermal resistance in fibers. Herein, we develop a microfluidic spinning method to prepare gradient all-nanostructure aramid aerogel fibers (GAFs). Benefiting from the simultaneous shear alignment and diffusion dilution of a good solvent within the channels, the precursor gel fibers assemble into a structure with a sparse exterior and dense interior, which reverses during supercritical drying to form sheath and core layers with average pore diameters of 150 nm and 600 nm, respectively. Experiments and simulations reveal that the gradient nanostructure creates high interfacial thermal resistance at heat transfer interfaces, resulting in a radial thermal conductivity as low as 0.0228 W m<sup>–1</sup> K<sup>–1</sup>, far below that of air and wet-spun aerogel fibers. Moreover, GAF’s unique nano-entangled network efficiently dissipates stress, achieving exceptionally high tensile strength (29.5 MPa) and fracture strain (39.2%). This work establishes a correlation between multiscale nanostructures and superlative performance, thereby expanding the scope of aerogel applications in intricate environments.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"158 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57646-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57646-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

轻质,纳米多孔气凝胶纤维是至关重要的个人热管理和专门的热保护。然而,以芳纶气凝胶为例的湿纺方法不可避免地形成致密的外层,大大降低了有效热障纳米空隙的体积分数,限制了纤维中最终热阻的发展。本文采用微流控纺丝方法制备梯度全纳米结构芳纶气凝胶纤维(gaf)。得益于通道内良好溶剂的剪切排列和扩散稀释,前驱体凝胶纤维聚集成外疏内密的结构,在超临界干燥过程中形成鞘层和核心层,平均孔径分别为150 nm和600 nm。实验和模拟表明,梯度纳米结构在传热界面产生了较高的界面热阻,导致径向导热系数低至0.0228 W m-1 K-1,远低于空气和湿纺气凝胶纤维。此外,GAF独特的纳米纠缠网络有效地消除了应力,实现了极高的抗拉强度(29.5 MPa)和断裂应变(39.2%)。这项工作建立了多尺度纳米结构与最佳性能之间的相关性,从而扩大了气凝胶在复杂环境中的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties

Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties

Lightweight, nanoporous aerogel fibers are crucial for personal thermal management and specialized heat protection. However, wet-spinning methods, exemplified by aramid aerogels, inevitably form a dense outer layer, significantly reducing the volume fraction of efficient thermal barrier nanovoids and limiting the development of ultimate thermal resistance in fibers. Herein, we develop a microfluidic spinning method to prepare gradient all-nanostructure aramid aerogel fibers (GAFs). Benefiting from the simultaneous shear alignment and diffusion dilution of a good solvent within the channels, the precursor gel fibers assemble into a structure with a sparse exterior and dense interior, which reverses during supercritical drying to form sheath and core layers with average pore diameters of 150 nm and 600 nm, respectively. Experiments and simulations reveal that the gradient nanostructure creates high interfacial thermal resistance at heat transfer interfaces, resulting in a radial thermal conductivity as low as 0.0228 W m–1 K–1, far below that of air and wet-spun aerogel fibers. Moreover, GAF’s unique nano-entangled network efficiently dissipates stress, achieving exceptionally high tensile strength (29.5 MPa) and fracture strain (39.2%). This work establishes a correlation between multiscale nanostructures and superlative performance, thereby expanding the scope of aerogel applications in intricate environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信