接触快餐广告期间的脑连接体全脑特征预测2岁时的BMI。

Afroditi Papantoni, Ashley N Gearhardt, Sonja Yokum, Lindzey V Hoover, Emily S Finn, Grace E Shearrer, Lindsey Smith Taillie, Saame Raza Shaikh, Katie A Meyer, Kyle S Burger
{"title":"接触快餐广告期间的脑连接体全脑特征预测2岁时的BMI。","authors":"Afroditi Papantoni, Ashley N Gearhardt, Sonja Yokum, Lindzey V Hoover, Emily S Finn, Grace E Shearrer, Lindsey Smith Taillie, Saame Raza Shaikh, Katie A Meyer, Kyle S Burger","doi":"10.1093/scan/nsaf018","DOIUrl":null,"url":null,"abstract":"<p><p>Food advertisements target adolescents, contributing to weight gain and obesity. However, whether brain connectivity during those food advertisements can predict weight gain is unknown. Here, 121 adolescents [14.1 ± 1.0 years; 50.4% female; body mass index (BMI): 23.4 ± 4.8; 71.9% White] completed both a baseline fMRI paradigm viewing advertisements (unhealthy fast food, healthier fast food, and nonfood) and an anthropometric assessment 2 years later. We used connectome-based predictive modeling to derive brain networks that were associated with BMI both at baseline and the 2-year follow-up. During exposure to unhealthy fast-food commercials, we identified a brain network comprising high-degree nodes in the hippocampus, parahippocampal gyrus, and fusiform gyrus rich with connections to prefrontal and occipital nodes that predicted lower BMI at the 2-year follow-up (r = 0.17; P = .031). A similar network was derived from baseline BMI (n = 168; r = 0.34; P < .001). Functional connectivity networks during exposure to the healthier fast food (P = .152) and nonfood commercials (P = .117) were not significant predictors of 2-year BMI. Key brain regions in our derived networks have been previously shown to encode aspects of memory formation, visual processing, and self-control. As such, the integration of these regions may reflect a mechanism of adolescents' ability to exert self-control toward obesogenic food stimuli.</p>","PeriodicalId":94208,"journal":{"name":"Social cognitive and affective neuroscience","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891444/pdf/","citationCount":"0","resultStr":"{\"title\":\"Connectome-wide brain signature during fast-food advertisement exposure predicts BMI at 2 years.\",\"authors\":\"Afroditi Papantoni, Ashley N Gearhardt, Sonja Yokum, Lindzey V Hoover, Emily S Finn, Grace E Shearrer, Lindsey Smith Taillie, Saame Raza Shaikh, Katie A Meyer, Kyle S Burger\",\"doi\":\"10.1093/scan/nsaf018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Food advertisements target adolescents, contributing to weight gain and obesity. However, whether brain connectivity during those food advertisements can predict weight gain is unknown. Here, 121 adolescents [14.1 ± 1.0 years; 50.4% female; body mass index (BMI): 23.4 ± 4.8; 71.9% White] completed both a baseline fMRI paradigm viewing advertisements (unhealthy fast food, healthier fast food, and nonfood) and an anthropometric assessment 2 years later. We used connectome-based predictive modeling to derive brain networks that were associated with BMI both at baseline and the 2-year follow-up. During exposure to unhealthy fast-food commercials, we identified a brain network comprising high-degree nodes in the hippocampus, parahippocampal gyrus, and fusiform gyrus rich with connections to prefrontal and occipital nodes that predicted lower BMI at the 2-year follow-up (r = 0.17; P = .031). A similar network was derived from baseline BMI (n = 168; r = 0.34; P < .001). Functional connectivity networks during exposure to the healthier fast food (P = .152) and nonfood commercials (P = .117) were not significant predictors of 2-year BMI. Key brain regions in our derived networks have been previously shown to encode aspects of memory formation, visual processing, and self-control. As such, the integration of these regions may reflect a mechanism of adolescents' ability to exert self-control toward obesogenic food stimuli.</p>\",\"PeriodicalId\":94208,\"journal\":{\"name\":\"Social cognitive and affective neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891444/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social cognitive and affective neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/scan/nsaf018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social cognitive and affective neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/scan/nsaf018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

食品广告的目标是青少年,导致体重增加和肥胖。然而,看这些食品广告时大脑的连通性是否能预测体重增加还不得而知。121例青少年(14.1±1.0y;50.4%的女性;体重指数:23.4±4.8;71.9%的白人)完成了观看广告(不健康快餐,健康快餐和非食品)的基线fMRI范式和两年后的人体测量评估。我们使用基于连接体的预测建模(CPM)来获得与基线和2年随访时BMI相关的大脑网络。在暴露于不健康的快餐广告期间,我们发现了一个由海马、海马旁和梭状回的高节点组成的大脑网络,该网络与前额叶和枕叶节点有丰富的连接,预测了2年随访时较低的BMI (r =0.17;p = 0.031)。基线BMI (n=168;r = 0.34;p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connectome-wide brain signature during fast-food advertisement exposure predicts BMI at 2 years.

Food advertisements target adolescents, contributing to weight gain and obesity. However, whether brain connectivity during those food advertisements can predict weight gain is unknown. Here, 121 adolescents [14.1 ± 1.0 years; 50.4% female; body mass index (BMI): 23.4 ± 4.8; 71.9% White] completed both a baseline fMRI paradigm viewing advertisements (unhealthy fast food, healthier fast food, and nonfood) and an anthropometric assessment 2 years later. We used connectome-based predictive modeling to derive brain networks that were associated with BMI both at baseline and the 2-year follow-up. During exposure to unhealthy fast-food commercials, we identified a brain network comprising high-degree nodes in the hippocampus, parahippocampal gyrus, and fusiform gyrus rich with connections to prefrontal and occipital nodes that predicted lower BMI at the 2-year follow-up (r = 0.17; P = .031). A similar network was derived from baseline BMI (n = 168; r = 0.34; P < .001). Functional connectivity networks during exposure to the healthier fast food (P = .152) and nonfood commercials (P = .117) were not significant predictors of 2-year BMI. Key brain regions in our derived networks have been previously shown to encode aspects of memory formation, visual processing, and self-control. As such, the integration of these regions may reflect a mechanism of adolescents' ability to exert self-control toward obesogenic food stimuli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信