{"title":"双向交替进水生物滤池反硝化效率与生物膜群落演替。","authors":"Lifei Wang, Jiajia Zhou, Jiaqing Xiong, Tuanping Hu, Qianhe Xia","doi":"10.1080/09593330.2024.2448764","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilters are widely used for nitrogen removal in wastewater treatment. This study developed a bidirectional alternating-influent biofilter to reduce clogging and enhance nitrogen removal. Alternating influent utilized biofilm on the media as a denitrification carbon source. With initial ammonium, nitrate, and total nitrogen concentrations of 8.49±0.30, 12.52±0.20, and 19.89±0.79 mg/L, the forward influent achieved ammonium, nitrate, and total nitrogen removal efficiencies of 81.6%, 66.8%, and 71.2%, increasing by 13.3%, 3.0%, and 4.8% at the effluent. Reverse influent further boosted nitrate and total nitrogen removal by 14.0% and 5.5%. The natural DO gradient under conventional influent conditions was simulated, and the nitrogen removal mechanism and treatment effect, mainly nitrification and denitrification, were discussed. Microbial analysis showed that endogenous carbon in the biofilm, derived from decaying cells and EPS, reduced clogging risk. Significant changes in bacterial count, EPS content, and microbial abundance were observed across influent directions, with Proteobacteria, Bacteroidetes, and Pseudomonas increasing under reverse flow. These results indicate that bidirectional alternating influent can significantly improve nitrogen removal and reduce clogging, offering an effective optimization for wastewater treatment.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-15"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denitrification efficiency and biofilm community succession in a bidirectional alternating influent biofilter.\",\"authors\":\"Lifei Wang, Jiajia Zhou, Jiaqing Xiong, Tuanping Hu, Qianhe Xia\",\"doi\":\"10.1080/09593330.2024.2448764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilters are widely used for nitrogen removal in wastewater treatment. This study developed a bidirectional alternating-influent biofilter to reduce clogging and enhance nitrogen removal. Alternating influent utilized biofilm on the media as a denitrification carbon source. With initial ammonium, nitrate, and total nitrogen concentrations of 8.49±0.30, 12.52±0.20, and 19.89±0.79 mg/L, the forward influent achieved ammonium, nitrate, and total nitrogen removal efficiencies of 81.6%, 66.8%, and 71.2%, increasing by 13.3%, 3.0%, and 4.8% at the effluent. Reverse influent further boosted nitrate and total nitrogen removal by 14.0% and 5.5%. The natural DO gradient under conventional influent conditions was simulated, and the nitrogen removal mechanism and treatment effect, mainly nitrification and denitrification, were discussed. Microbial analysis showed that endogenous carbon in the biofilm, derived from decaying cells and EPS, reduced clogging risk. Significant changes in bacterial count, EPS content, and microbial abundance were observed across influent directions, with Proteobacteria, Bacteroidetes, and Pseudomonas increasing under reverse flow. These results indicate that bidirectional alternating influent can significantly improve nitrogen removal and reduce clogging, offering an effective optimization for wastewater treatment.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2448764\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2448764","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Denitrification efficiency and biofilm community succession in a bidirectional alternating influent biofilter.
Biofilters are widely used for nitrogen removal in wastewater treatment. This study developed a bidirectional alternating-influent biofilter to reduce clogging and enhance nitrogen removal. Alternating influent utilized biofilm on the media as a denitrification carbon source. With initial ammonium, nitrate, and total nitrogen concentrations of 8.49±0.30, 12.52±0.20, and 19.89±0.79 mg/L, the forward influent achieved ammonium, nitrate, and total nitrogen removal efficiencies of 81.6%, 66.8%, and 71.2%, increasing by 13.3%, 3.0%, and 4.8% at the effluent. Reverse influent further boosted nitrate and total nitrogen removal by 14.0% and 5.5%. The natural DO gradient under conventional influent conditions was simulated, and the nitrogen removal mechanism and treatment effect, mainly nitrification and denitrification, were discussed. Microbial analysis showed that endogenous carbon in the biofilm, derived from decaying cells and EPS, reduced clogging risk. Significant changes in bacterial count, EPS content, and microbial abundance were observed across influent directions, with Proteobacteria, Bacteroidetes, and Pseudomonas increasing under reverse flow. These results indicate that bidirectional alternating influent can significantly improve nitrogen removal and reduce clogging, offering an effective optimization for wastewater treatment.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current