甲状腺多模态影像深度学习对TI-RADS分类3-5的诊断价值。

IF 3.7 3区 医学 Q2 Medicine
Tingting Qian, Xuhan Feng, Yahan Zhou, Shan Ling, Jincao Yao, Min Lai, Chen Chen, Jun Lin, Dong Xu
{"title":"甲状腺多模态影像深度学习对TI-RADS分类3-5的诊断价值。","authors":"Tingting Qian, Xuhan Feng, Yahan Zhou, Shan Ling, Jincao Yao, Min Lai, Chen Chen, Jun Lin, Dong Xu","doi":"10.1007/s12020-025-04198-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Thyroid nodules classified within the Thyroid Imaging Reporting and Data Systems (TI-RADS) category 3-5 are typically regarded as having varying degrees of malignancy risk, with the risk increasing from TI-RADS 3 to TI-RADS 5. While some of these nodules may undergo fine-needle aspiration (FNA) biopsy to assess their nature, this procedure carries a risk of false negatives and inherent complications. To avoid the need for unnecessary biopsy examination, we explored a method for distinguishing the benign and malignant characteristics of thyroid TI-RADS 3-5 nodules based on deep-learning ultrasound images combined with computed tomography (CT).</p><p><strong>Methods: </strong>Thyroid nodules, assessed as American College of Radiology (ACR) TI-RADS category 3-5 through conventional ultrasound, all of which had postoperative pathology results, were examined using both conventional ultrasound and CT before operation. We investigated the effectiveness of deep-learning models based on ultrasound alone, CT alone, and a combination of both imaging modalities using the following metrics: Area Under Curve (AUC), sensitivity, accuracy, and positive predictive value (PPV). Additionally, we compared the diagnostic efficacy of the combined methods with manual readings of ultrasound and CT.</p><p><strong>Results: </strong>A total of 768 thyroid nodules falling within TI-RADS categories 3-5 were identified across 768 patients. The dataset comprised 499 malignant and 269 benign cases. For the automatic identification of thyroid TI-RADS category 3-5 nodules, deep learning combined with ultrasound and CT demonstrated a significantly higher AUC (0.930; 95% CI: 0.892, 0.969) compared to the application of ultrasound alone AUC (0.901; 95% CI: 0.856, 0.947) or CT alone AUC (0.776; 95% CI: 0.713, 0.840). Additionally, the AUC of combined modalities surpassed that of radiologists'assessments using ultrasound alone AUCmean (0.725;95% CI:0.677, 0.773), CT alone AUCmean (0.617; 95% CI:0.564, 0.669). Deep learning method combined with ultrasound and CT imaging of thyroid can allow more accurate and precise classification of nodules within TI-RADS categories 3-5.</p>","PeriodicalId":11572,"journal":{"name":"Endocrine","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic value of deep learning of multimodal imaging of thyroid for TI-RADS category 3-5 classification.\",\"authors\":\"Tingting Qian, Xuhan Feng, Yahan Zhou, Shan Ling, Jincao Yao, Min Lai, Chen Chen, Jun Lin, Dong Xu\",\"doi\":\"10.1007/s12020-025-04198-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Thyroid nodules classified within the Thyroid Imaging Reporting and Data Systems (TI-RADS) category 3-5 are typically regarded as having varying degrees of malignancy risk, with the risk increasing from TI-RADS 3 to TI-RADS 5. While some of these nodules may undergo fine-needle aspiration (FNA) biopsy to assess their nature, this procedure carries a risk of false negatives and inherent complications. To avoid the need for unnecessary biopsy examination, we explored a method for distinguishing the benign and malignant characteristics of thyroid TI-RADS 3-5 nodules based on deep-learning ultrasound images combined with computed tomography (CT).</p><p><strong>Methods: </strong>Thyroid nodules, assessed as American College of Radiology (ACR) TI-RADS category 3-5 through conventional ultrasound, all of which had postoperative pathology results, were examined using both conventional ultrasound and CT before operation. We investigated the effectiveness of deep-learning models based on ultrasound alone, CT alone, and a combination of both imaging modalities using the following metrics: Area Under Curve (AUC), sensitivity, accuracy, and positive predictive value (PPV). Additionally, we compared the diagnostic efficacy of the combined methods with manual readings of ultrasound and CT.</p><p><strong>Results: </strong>A total of 768 thyroid nodules falling within TI-RADS categories 3-5 were identified across 768 patients. The dataset comprised 499 malignant and 269 benign cases. For the automatic identification of thyroid TI-RADS category 3-5 nodules, deep learning combined with ultrasound and CT demonstrated a significantly higher AUC (0.930; 95% CI: 0.892, 0.969) compared to the application of ultrasound alone AUC (0.901; 95% CI: 0.856, 0.947) or CT alone AUC (0.776; 95% CI: 0.713, 0.840). Additionally, the AUC of combined modalities surpassed that of radiologists'assessments using ultrasound alone AUCmean (0.725;95% CI:0.677, 0.773), CT alone AUCmean (0.617; 95% CI:0.564, 0.669). Deep learning method combined with ultrasound and CT imaging of thyroid can allow more accurate and precise classification of nodules within TI-RADS categories 3-5.</p>\",\"PeriodicalId\":11572,\"journal\":{\"name\":\"Endocrine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12020-025-04198-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12020-025-04198-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

背景:甲状腺影像学报告和数据系统(TI-RADS)分类3-5类甲状腺结节通常被认为具有不同程度的恶性风险,从TI-RADS 3级到TI-RADS 5级风险增加。虽然其中一些结节可能会进行细针穿刺活检(FNA)来评估其性质,但这种方法有假阴性和固有并发症的风险。为了避免不必要的活检检查,我们探索了一种基于深度学习超声图像结合计算机断层扫描(CT)区分甲状腺TI-RADS 3-5结节良恶性特征的方法。方法:术前常规超声检查美国放射学会(American College of Radiology, ACR) TI-RADS分类3-5类甲状腺结节,均有术后病理结果,行常规超声及CT检查。我们研究了基于超声单独、CT单独以及两种成像方式组合的深度学习模型的有效性,使用以下指标:曲线下面积(AUC)、灵敏度、准确性和阳性预测值(PPV)。此外,我们比较了超声和CT手工读数联合方法的诊断效果。结果:768例患者共发现768个甲状腺结节,属于TI-RADS分类3-5。该数据集包括499例恶性病例和269例良性病例。对于甲状腺TI-RADS 3-5类结节的自动识别,深度学习联合超声和CT显示出更高的AUC (0.930;95% CI: 0.892, 0.969),与单纯应用超声的AUC (0.901;95% CI: 0.856, 0.947)或单独CT AUC (0.776;95% ci: 0.713, 0.840)。此外,综合模式的AUC超过放射科医师单独使用超声评估的AUC (0.725;95% CI:0.677, 0.773),单独使用CT评估的AUC (0.617;95% ci:0.564, 0.669)。深度学习方法结合甲状腺超声和CT成像,可以更准确、精确地对TI-RADS分类3-5类结节进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnostic value of deep learning of multimodal imaging of thyroid for TI-RADS category 3-5 classification.

Background: Thyroid nodules classified within the Thyroid Imaging Reporting and Data Systems (TI-RADS) category 3-5 are typically regarded as having varying degrees of malignancy risk, with the risk increasing from TI-RADS 3 to TI-RADS 5. While some of these nodules may undergo fine-needle aspiration (FNA) biopsy to assess their nature, this procedure carries a risk of false negatives and inherent complications. To avoid the need for unnecessary biopsy examination, we explored a method for distinguishing the benign and malignant characteristics of thyroid TI-RADS 3-5 nodules based on deep-learning ultrasound images combined with computed tomography (CT).

Methods: Thyroid nodules, assessed as American College of Radiology (ACR) TI-RADS category 3-5 through conventional ultrasound, all of which had postoperative pathology results, were examined using both conventional ultrasound and CT before operation. We investigated the effectiveness of deep-learning models based on ultrasound alone, CT alone, and a combination of both imaging modalities using the following metrics: Area Under Curve (AUC), sensitivity, accuracy, and positive predictive value (PPV). Additionally, we compared the diagnostic efficacy of the combined methods with manual readings of ultrasound and CT.

Results: A total of 768 thyroid nodules falling within TI-RADS categories 3-5 were identified across 768 patients. The dataset comprised 499 malignant and 269 benign cases. For the automatic identification of thyroid TI-RADS category 3-5 nodules, deep learning combined with ultrasound and CT demonstrated a significantly higher AUC (0.930; 95% CI: 0.892, 0.969) compared to the application of ultrasound alone AUC (0.901; 95% CI: 0.856, 0.947) or CT alone AUC (0.776; 95% CI: 0.713, 0.840). Additionally, the AUC of combined modalities surpassed that of radiologists'assessments using ultrasound alone AUCmean (0.725;95% CI:0.677, 0.773), CT alone AUCmean (0.617; 95% CI:0.564, 0.669). Deep learning method combined with ultrasound and CT imaging of thyroid can allow more accurate and precise classification of nodules within TI-RADS categories 3-5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrine
Endocrine 医学-内分泌学与代谢
CiteScore
6.40
自引率
5.40%
发文量
0
期刊介绍: Well-established as a major journal in today’s rapidly advancing experimental and clinical research areas, Endocrine publishes original articles devoted to basic (including molecular, cellular and physiological studies), translational and clinical research in all the different fields of endocrinology and metabolism. Articles will be accepted based on peer-reviews, priority, and editorial decision. Invited reviews, mini-reviews and viewpoints on relevant pathophysiological and clinical topics, as well as Editorials on articles appearing in the Journal, are published. Unsolicited Editorials will be evaluated by the editorial team. Outcomes of scientific meetings, as well as guidelines and position statements, may be submitted. The Journal also considers special feature articles in the field of endocrine genetics and epigenetics, as well as articles devoted to novel methods and techniques in endocrinology. Endocrine covers controversial, clinical endocrine issues. Meta-analyses on endocrine and metabolic topics are also accepted. Descriptions of single clinical cases and/or small patients studies are not published unless of exceptional interest. However, reports of novel imaging studies and endocrine side effects in single patients may be considered. Research letters and letters to the editor related or unrelated to recently published articles can be submitted. Endocrine covers leading topics in endocrinology such as neuroendocrinology, pituitary and hypothalamic peptides, thyroid physiological and clinical aspects, bone and mineral metabolism and osteoporosis, obesity, lipid and energy metabolism and food intake control, insulin, Type 1 and Type 2 diabetes, hormones of male and female reproduction, adrenal diseases pediatric and geriatric endocrinology, endocrine hypertension and endocrine oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信