一种新型吡唑啉喹啉-2- 1杂合体作为EGFR和BRAFV600E双抑制剂的创新方法。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Mohamed M Hawwas, Ahmed S Mancy, Mohamed Ramadan, Tarek S Ibrahim, Ashraf H Bayoumi, Mohamed Alswah
{"title":"一种新型吡唑啉喹啉-2- 1杂合体作为EGFR和BRAFV600E双抑制剂的创新方法。","authors":"Mohamed M Hawwas, Ahmed S Mancy, Mohamed Ramadan, Tarek S Ibrahim, Ashraf H Bayoumi, Mohamed Alswah","doi":"10.1007/s11030-025-11127-4","DOIUrl":null,"url":null,"abstract":"<p><p>Novel quinoline-based derivatives 2a-e and 4a-j have been designed and synthesized as potential antiproliferative agents. The designed compounds were screened for their antiproliferative activity against sixty cell lines according to NCI protocol. The promising hybrids 4d-g are screened by MTT assays on three cancer cell lines: leukemia (MOLT-4), lung cancer (HOP-92), and breast cancer (T47D), with IC<sub>50</sub> values ranging from 4.982 ± 0.2 to 36.52 ± 1.46 µM compared to Staurosporine, with compound 4e being the most effective. Derivatives 4d-g were evaluated for their inhibitory activity on EGFR and BRAF<sup>V600E</sup>. Compound 4e exhibited the highest inhibitory activities, with IC<sub>50</sub> values of 0.055 ± 0.002 μM for EGFR and 0.068 ± 0.003 μM for BRAF<sup>V600E</sup>, compared to the reference drugs erlotinib (IC<sub>50</sub> 0.06 ± 0.002 μM) and vemurafenib (IC<sub>50</sub> 0.035 ± 0.001 μM), respectively. Cell cycle analysis of the HOP-92 manifested that pre-G1 apoptosis signaling took place after 4e treatment. Docking simulations were employed to analyze the modes and scores of compounds 4d-g with respect to EGFR and BRAF<sup>V600E</sup>. The results revealed that compound 4e exhibited strong affinity for both EGFR and BRAF<sup>V600E</sup> compared to the reference drugs with values of - 3.226 and - 3.474 kcal/mol, respectively.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An innovative approach to development of new pyrazolylquinolin-2-one hybrids as dual EGFR and BRAF<sup>V600E</sup> inhibitors.\",\"authors\":\"Mohamed M Hawwas, Ahmed S Mancy, Mohamed Ramadan, Tarek S Ibrahim, Ashraf H Bayoumi, Mohamed Alswah\",\"doi\":\"10.1007/s11030-025-11127-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Novel quinoline-based derivatives 2a-e and 4a-j have been designed and synthesized as potential antiproliferative agents. The designed compounds were screened for their antiproliferative activity against sixty cell lines according to NCI protocol. The promising hybrids 4d-g are screened by MTT assays on three cancer cell lines: leukemia (MOLT-4), lung cancer (HOP-92), and breast cancer (T47D), with IC<sub>50</sub> values ranging from 4.982 ± 0.2 to 36.52 ± 1.46 µM compared to Staurosporine, with compound 4e being the most effective. Derivatives 4d-g were evaluated for their inhibitory activity on EGFR and BRAF<sup>V600E</sup>. Compound 4e exhibited the highest inhibitory activities, with IC<sub>50</sub> values of 0.055 ± 0.002 μM for EGFR and 0.068 ± 0.003 μM for BRAF<sup>V600E</sup>, compared to the reference drugs erlotinib (IC<sub>50</sub> 0.06 ± 0.002 μM) and vemurafenib (IC<sub>50</sub> 0.035 ± 0.001 μM), respectively. Cell cycle analysis of the HOP-92 manifested that pre-G1 apoptosis signaling took place after 4e treatment. Docking simulations were employed to analyze the modes and scores of compounds 4d-g with respect to EGFR and BRAF<sup>V600E</sup>. The results revealed that compound 4e exhibited strong affinity for both EGFR and BRAF<sup>V600E</sup> compared to the reference drugs with values of - 3.226 and - 3.474 kcal/mol, respectively.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11127-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11127-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

新型喹啉衍生物2a-e和4a-j被设计和合成为潜在的抗增殖药物。根据NCI方案对所设计的化合物对60种细胞系的抗增殖活性进行了筛选。在白血病(MOLT-4)、肺癌(hopp -92)和乳腺癌(T47D) 3种肿瘤细胞系上进行MTT试验,筛选了具有较好应用前景的杂合物4d-g,与Staurosporine相比,IC50值在4.982±0.2 ~ 36.52±1.46µM之间,其中化合物4e效果最好。评估衍生物4d-g对EGFR和BRAFV600E的抑制活性。与对照药物厄洛替尼(IC50为0.06±0.002 μM)和vemurafenib (IC50为0.035±0.001 μM)相比,化合物4e对EGFR的IC50为0.055±0.002 μM,对BRAFV600E的IC50为0.068±0.003 μM,抑制活性最高。对HOP-92的细胞周期分析表明,4e处理后发生了g1前细胞凋亡信号传导。对接模拟分析了化合物4d-g相对于EGFR和BRAFV600E的模式和分数。结果表明,与对照药物相比,化合物4e对EGFR和BRAFV600E均表现出较强的亲和力,分别为- 3.226和- 3.474 kcal/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An innovative approach to development of new pyrazolylquinolin-2-one hybrids as dual EGFR and BRAFV600E inhibitors.

Novel quinoline-based derivatives 2a-e and 4a-j have been designed and synthesized as potential antiproliferative agents. The designed compounds were screened for their antiproliferative activity against sixty cell lines according to NCI protocol. The promising hybrids 4d-g are screened by MTT assays on three cancer cell lines: leukemia (MOLT-4), lung cancer (HOP-92), and breast cancer (T47D), with IC50 values ranging from 4.982 ± 0.2 to 36.52 ± 1.46 µM compared to Staurosporine, with compound 4e being the most effective. Derivatives 4d-g were evaluated for their inhibitory activity on EGFR and BRAFV600E. Compound 4e exhibited the highest inhibitory activities, with IC50 values of 0.055 ± 0.002 μM for EGFR and 0.068 ± 0.003 μM for BRAFV600E, compared to the reference drugs erlotinib (IC50 0.06 ± 0.002 μM) and vemurafenib (IC50 0.035 ± 0.001 μM), respectively. Cell cycle analysis of the HOP-92 manifested that pre-G1 apoptosis signaling took place after 4e treatment. Docking simulations were employed to analyze the modes and scores of compounds 4d-g with respect to EGFR and BRAFV600E. The results revealed that compound 4e exhibited strong affinity for both EGFR and BRAFV600E compared to the reference drugs with values of - 3.226 and - 3.474 kcal/mol, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信