{"title":"阶梯加载下初始损伤对岩石材料随时间变形影响的研究","authors":"Ling Zhu, Tiantao Li, Xiangjun Pei, Peng Xue, Yufei Liang","doi":"10.1111/ffe.14586","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Investigating the creep properties of damaged rocks is essential for evaluating the long-term stability of seismically cracked slopes in earthquake-prone regions. In this study, cyclic loading-unloading and step creep loading tests were sequentially performed on metamorphic sandstone, granite, and phyllite. Dissipated energy was introduced to establish the initial damage model, and the effect patterns and mechanisms of initial damage on creep properties were analyzed. The experimental results showed that dissipated energy and the damage variable increased linearly with the number of loading-unloading cycles. The increase in initial damage results in greater creep strain, higher steady-state creep rate, and increased dissipated energy under the same creep loading, while reducing the long-term strength of the rock. Prior loading-unloading promoted the development of microcracks and accelerated the time-dependent deformation of the rock. This study provides a new understanding of the long-term stability of seismically cracked slopes in strong-earthquake mountainous areas.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 4","pages":"1819-1832"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the Effect of Initial Damage on the Time-Dependent Deformation of Rock Materials Under Step Loading\",\"authors\":\"Ling Zhu, Tiantao Li, Xiangjun Pei, Peng Xue, Yufei Liang\",\"doi\":\"10.1111/ffe.14586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Investigating the creep properties of damaged rocks is essential for evaluating the long-term stability of seismically cracked slopes in earthquake-prone regions. In this study, cyclic loading-unloading and step creep loading tests were sequentially performed on metamorphic sandstone, granite, and phyllite. Dissipated energy was introduced to establish the initial damage model, and the effect patterns and mechanisms of initial damage on creep properties were analyzed. The experimental results showed that dissipated energy and the damage variable increased linearly with the number of loading-unloading cycles. The increase in initial damage results in greater creep strain, higher steady-state creep rate, and increased dissipated energy under the same creep loading, while reducing the long-term strength of the rock. Prior loading-unloading promoted the development of microcracks and accelerated the time-dependent deformation of the rock. This study provides a new understanding of the long-term stability of seismically cracked slopes in strong-earthquake mountainous areas.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 4\",\"pages\":\"1819-1832\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14586\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14586","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation on the Effect of Initial Damage on the Time-Dependent Deformation of Rock Materials Under Step Loading
Investigating the creep properties of damaged rocks is essential for evaluating the long-term stability of seismically cracked slopes in earthquake-prone regions. In this study, cyclic loading-unloading and step creep loading tests were sequentially performed on metamorphic sandstone, granite, and phyllite. Dissipated energy was introduced to establish the initial damage model, and the effect patterns and mechanisms of initial damage on creep properties were analyzed. The experimental results showed that dissipated energy and the damage variable increased linearly with the number of loading-unloading cycles. The increase in initial damage results in greater creep strain, higher steady-state creep rate, and increased dissipated energy under the same creep loading, while reducing the long-term strength of the rock. Prior loading-unloading promoted the development of microcracks and accelerated the time-dependent deformation of the rock. This study provides a new understanding of the long-term stability of seismically cracked slopes in strong-earthquake mountainous areas.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.