基于fft的周期性非均匀微结构相场断裂建模

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Tom Schneider, Markus Kästner
{"title":"基于fft的周期性非均匀微结构相场断裂建模","authors":"Tom Schneider,&nbsp;Markus Kästner","doi":"10.1111/ffe.14553","DOIUrl":null,"url":null,"abstract":"<p>The failure of inhomogeneous microstructures is of increasing relevance, driven by the future need for tailored materials and the significant influence of microstructure on macroscopic properties. The phase-field method for fracture has proven to be a versatile tool for predicting unknown crack paths and failure mechanisms. In this contribution, we propose a phase-field model for fracture of periodic heterogeneous microstructures in a general finite strain setting. To overcome the bottleneck of scalability, we employ powerful and scalable solvers based on the fast Fourier transform (FFT). We demonstrate the capability of the model using the fundamental example of brittle fracture. A thorough comparison with conventional finite element method (FEM) reference results is carried out using a simple reference geometry. The results obtained show quantitative agreement between both numerical methods. Parameter studies provide recommendations for the choice of the numerical parameters. Following the comparison, we apply the FFT-based method to synthetic inhomogeneous microstructures, with a special emphasis of the investigation on scalability with increasing degrees of freedom and robustness of the method. The results of 2D and 3D simulations are promising, paving the way for future extensions in inverse materials design, for example, for metallic microstructures.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 4","pages":"1782-1805"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14553","citationCount":"0","resultStr":"{\"title\":\"FFT-Based Phase-Field Fracture Modeling of Periodic Inhomogeneous Microstructures\",\"authors\":\"Tom Schneider,&nbsp;Markus Kästner\",\"doi\":\"10.1111/ffe.14553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The failure of inhomogeneous microstructures is of increasing relevance, driven by the future need for tailored materials and the significant influence of microstructure on macroscopic properties. The phase-field method for fracture has proven to be a versatile tool for predicting unknown crack paths and failure mechanisms. In this contribution, we propose a phase-field model for fracture of periodic heterogeneous microstructures in a general finite strain setting. To overcome the bottleneck of scalability, we employ powerful and scalable solvers based on the fast Fourier transform (FFT). We demonstrate the capability of the model using the fundamental example of brittle fracture. A thorough comparison with conventional finite element method (FEM) reference results is carried out using a simple reference geometry. The results obtained show quantitative agreement between both numerical methods. Parameter studies provide recommendations for the choice of the numerical parameters. Following the comparison, we apply the FFT-based method to synthetic inhomogeneous microstructures, with a special emphasis of the investigation on scalability with increasing degrees of freedom and robustness of the method. The results of 2D and 3D simulations are promising, paving the way for future extensions in inverse materials design, for example, for metallic microstructures.</p>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 4\",\"pages\":\"1782-1805\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14553\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14553\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14553","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于未来对定制材料的需求以及微观结构对宏观性能的重大影响,非均匀微观结构的破坏越来越重要。相场断裂法已被证明是预测未知裂纹路径和破坏机制的通用工具。在这篇文章中,我们提出了在一般有限应变条件下周期性非均质微结构断裂的相场模型。为了克服可扩展性的瓶颈,我们采用了基于快速傅里叶变换(FFT)的强大的可扩展性求解器。我们用脆性断裂的基本例子来证明该模型的能力。采用简单的参考几何结构,与传统有限元方法的参考结果进行了彻底的比较。所得结果表明两种数值方法在数量上是一致的。参数研究为数值参数的选择提供了建议。在比较之后,我们将基于fft的方法应用于非均匀微观结构的合成,并特别强调了随自由度增加的可扩展性和方法的鲁棒性。二维和三维模拟的结果是有希望的,为未来在逆向材料设计方面的扩展铺平了道路,例如金属微结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

FFT-Based Phase-Field Fracture Modeling of Periodic Inhomogeneous Microstructures

FFT-Based Phase-Field Fracture Modeling of Periodic Inhomogeneous Microstructures

The failure of inhomogeneous microstructures is of increasing relevance, driven by the future need for tailored materials and the significant influence of microstructure on macroscopic properties. The phase-field method for fracture has proven to be a versatile tool for predicting unknown crack paths and failure mechanisms. In this contribution, we propose a phase-field model for fracture of periodic heterogeneous microstructures in a general finite strain setting. To overcome the bottleneck of scalability, we employ powerful and scalable solvers based on the fast Fourier transform (FFT). We demonstrate the capability of the model using the fundamental example of brittle fracture. A thorough comparison with conventional finite element method (FEM) reference results is carried out using a simple reference geometry. The results obtained show quantitative agreement between both numerical methods. Parameter studies provide recommendations for the choice of the numerical parameters. Following the comparison, we apply the FFT-based method to synthetic inhomogeneous microstructures, with a special emphasis of the investigation on scalability with increasing degrees of freedom and robustness of the method. The results of 2D and 3D simulations are promising, paving the way for future extensions in inverse materials design, for example, for metallic microstructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信