将机器学习方法应用于质子的激光加速:从合成数据中吸取的教训

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Ronak Desai, Thomas Zhang, John J. Felice, Ricky Oropeza, Joseph R. Smith, Alona Kryshchenko, Chris Orban, Michael L. Dexter, Anil K. Patnaik
{"title":"将机器学习方法应用于质子的激光加速:从合成数据中吸取的教训","authors":"Ronak Desai,&nbsp;Thomas Zhang,&nbsp;John J. Felice,&nbsp;Ricky Oropeza,&nbsp;Joseph R. Smith,&nbsp;Alona Kryshchenko,&nbsp;Chris Orban,&nbsp;Michael L. Dexter,&nbsp;Anil K. Patnaik","doi":"10.1002/ctpp.202400080","DOIUrl":null,"url":null,"abstract":"<p>In this study, we consider three different machine-learning methods—a three-hidden-layer neural network, support vector regression, and Gaussian process regression—and compare how well they can learn from a synthetic data set for proton acceleration in the Target Normal Sheath Acceleration regime. The synthetic data set was generated from a previously published theoretical model by Fuchs et al. 2005 that we modified. Once trained, these machine-learning methods can assist with efforts to maximize the peak proton energy, or with the more general problem of configuring the laser system to produce a proton energy spectrum with desired characteristics. In our study, we focus on both the accuracy of the machine-learning methods and the performance on one GPU including memory consumption. Although it is arguably the least sophisticated machine-learning model we considered, support vector regression performed very well in our tests.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202400080","citationCount":"0","resultStr":"{\"title\":\"Applying Machine-Learning Methods to Laser Acceleration of Protons: Lessons Learned From Synthetic Data\",\"authors\":\"Ronak Desai,&nbsp;Thomas Zhang,&nbsp;John J. Felice,&nbsp;Ricky Oropeza,&nbsp;Joseph R. Smith,&nbsp;Alona Kryshchenko,&nbsp;Chris Orban,&nbsp;Michael L. Dexter,&nbsp;Anil K. Patnaik\",\"doi\":\"10.1002/ctpp.202400080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we consider three different machine-learning methods—a three-hidden-layer neural network, support vector regression, and Gaussian process regression—and compare how well they can learn from a synthetic data set for proton acceleration in the Target Normal Sheath Acceleration regime. The synthetic data set was generated from a previously published theoretical model by Fuchs et al. 2005 that we modified. Once trained, these machine-learning methods can assist with efforts to maximize the peak proton energy, or with the more general problem of configuring the laser system to produce a proton energy spectrum with desired characteristics. In our study, we focus on both the accuracy of the machine-learning methods and the performance on one GPU including memory consumption. Although it is arguably the least sophisticated machine-learning model we considered, support vector regression performed very well in our tests.</p>\",\"PeriodicalId\":10700,\"journal\":{\"name\":\"Contributions to Plasma Physics\",\"volume\":\"65 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202400080\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400080\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400080","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们考虑了三种不同的机器学习方法——三隐藏层神经网络、支持向量回归和高斯过程回归——并比较了它们在目标正常鞘层加速机制下从质子加速的合成数据集中学习的效果。合成数据集是从Fuchs等人2005年发表的理论模型中生成的,我们对其进行了修改。经过训练后,这些机器学习方法可以帮助最大限度地提高质子能量峰值,或者解决配置激光系统以产生具有所需特征的质子能谱的更一般问题。在我们的研究中,我们关注机器学习方法的准确性和单个GPU上的性能,包括内存消耗。虽然它可以说是我们考虑过的最不复杂的机器学习模型,但支持向量回归在我们的测试中表现得非常好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Applying Machine-Learning Methods to Laser Acceleration of Protons: Lessons Learned From Synthetic Data

Applying Machine-Learning Methods to Laser Acceleration of Protons: Lessons Learned From Synthetic Data

In this study, we consider three different machine-learning methods—a three-hidden-layer neural network, support vector regression, and Gaussian process regression—and compare how well they can learn from a synthetic data set for proton acceleration in the Target Normal Sheath Acceleration regime. The synthetic data set was generated from a previously published theoretical model by Fuchs et al. 2005 that we modified. Once trained, these machine-learning methods can assist with efforts to maximize the peak proton energy, or with the more general problem of configuring the laser system to produce a proton energy spectrum with desired characteristics. In our study, we focus on both the accuracy of the machine-learning methods and the performance on one GPU including memory consumption. Although it is arguably the least sophisticated machine-learning model we considered, support vector regression performed very well in our tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Contributions to Plasma Physics
Contributions to Plasma Physics 物理-物理:流体与等离子体
CiteScore
2.90
自引率
12.50%
发文量
110
审稿时长
4-8 weeks
期刊介绍: Aims and Scope of Contributions to Plasma Physics: Basic physics of low-temperature plasmas; Strongly correlated non-ideal plasmas; Dusty Plasmas; Plasma discharges - microplasmas, reactive, and atmospheric pressure plasmas; Plasma diagnostics; Plasma-surface interaction; Plasma technology; Plasma medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信