316不锈钢疲劳裂纹萌生的研究

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
O. Benabdeljalil, M. K. Khan, M. E. Fitzpatrick
{"title":"316不锈钢疲劳裂纹萌生的研究","authors":"O. Benabdeljalil,&nbsp;M. K. Khan,&nbsp;M. E. Fitzpatrick","doi":"10.1111/ffe.14592","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Crack initiation in AISI 316 stainless steel has been investigated. Persistent slip bands (PSBs) were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). PSBs on the surface of the material increase the surface roughness and result in crack initiation. EBSD data from near the crack initiation region were used to correlate the global and local misorientations of the grains, plastic deformation, and Schmid factor with the fatigue life of specimens. The crack initiation region was found to have the highest misorientations. The region near crack initiation was found to have more plastic deformation, which was severe in specimens loaded with higher stresses. The kernel average misorientation (KAM) and grain reference orientation deviation (GROD) maps from the EBSD data were investigated for specimens that failed at different fatigue cycles. It was found that the interaction of high dislocation density, substructuring, and misorientation of low-angle grain boundaries in the region of plastic deformation resulted in fatigue crack initiation.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 4","pages":"1893-1904"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Fatigue Crack Initiation in 316 Stainless Steel\",\"authors\":\"O. Benabdeljalil,&nbsp;M. K. Khan,&nbsp;M. E. Fitzpatrick\",\"doi\":\"10.1111/ffe.14592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Crack initiation in AISI 316 stainless steel has been investigated. Persistent slip bands (PSBs) were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). PSBs on the surface of the material increase the surface roughness and result in crack initiation. EBSD data from near the crack initiation region were used to correlate the global and local misorientations of the grains, plastic deformation, and Schmid factor with the fatigue life of specimens. The crack initiation region was found to have the highest misorientations. The region near crack initiation was found to have more plastic deformation, which was severe in specimens loaded with higher stresses. The kernel average misorientation (KAM) and grain reference orientation deviation (GROD) maps from the EBSD data were investigated for specimens that failed at different fatigue cycles. It was found that the interaction of high dislocation density, substructuring, and misorientation of low-angle grain boundaries in the region of plastic deformation resulted in fatigue crack initiation.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 4\",\"pages\":\"1893-1904\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14592\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14592","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

对AISI 316不锈钢的裂纹萌生进行了研究。利用扫描电子显微镜(SEM)和原子力显微镜(AFM)对其进行了表征。材料表面的psb增加了表面粗糙度,导致裂纹萌生。利用裂纹起裂区附近的EBSD数据,将晶粒的整体和局部取向偏差、塑性变形和施密德因子与试样的疲劳寿命联系起来。结果表明,裂纹起裂区取向偏差最大。在高应力载荷下,裂纹起裂附近的塑性变形更大。利用EBSD数据研究了不同疲劳循环失效试样的核平均取向偏差(KAM)和晶粒参考取向偏差(GROD)图。结果表明,塑性变形区高位错密度、亚结构和低角晶界取向错误共同作用导致疲劳裂纹萌生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Fatigue Crack Initiation in 316 Stainless Steel

Crack initiation in AISI 316 stainless steel has been investigated. Persistent slip bands (PSBs) were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). PSBs on the surface of the material increase the surface roughness and result in crack initiation. EBSD data from near the crack initiation region were used to correlate the global and local misorientations of the grains, plastic deformation, and Schmid factor with the fatigue life of specimens. The crack initiation region was found to have the highest misorientations. The region near crack initiation was found to have more plastic deformation, which was severe in specimens loaded with higher stresses. The kernel average misorientation (KAM) and grain reference orientation deviation (GROD) maps from the EBSD data were investigated for specimens that failed at different fatigue cycles. It was found that the interaction of high dislocation density, substructuring, and misorientation of low-angle grain boundaries in the region of plastic deformation resulted in fatigue crack initiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信