{"title":"细胞来源的基底膜样细胞外基质促进内皮细胞的扩张和功能","authors":"Jiangwei Xiao, Kai You, Daohuan Lu, Shuwen Guan, Hengpeng Wu, Jing Gao, Yadong Tang, Shan Yu, Botao Gao","doi":"10.1002/jbm.a.37893","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Engineering cellular microenvironments with biomaterials is an effective strategy for endothelial cell expansion and functionality in vascular tissue engineering. The basement membrane (BM) is a natural vascular endothelium microenvironment that plays an important role in promoting rapid expansion and function of endothelial cells. However, mimicking the crucial function of BM with an ideal biomaterial remains challenging. In this study, we developed a cell-derived decellularized extracellular matrix (c-dECM) paper to mimic the role of BM in endothelial cell expansion and function. The results showed that c-dECM paper was a stable, biocompatible, and biodegradable scaffold that significantly promoted endothelial cell expansion by modulating cell migration, adhesion, and proliferation both in vivo and in vitro. Moreover, the biomimetic c-dECM paper can profoundly promote endothelial cell function by increasing the synthesis and release of nitric oxide (NO) and prostaglandin I2 (PGI2) and upregulating the expression of anticoagulant and vascularized genes, including <i>thrombomodulin</i> (<i>THBD</i>), <i>tissue factor pathway inhibitor</i> (<i>TFPI</i>), <i>endothelial growth factor</i> (<i>VEGF</i>) and <i>endoglin</i> (<i>CD105</i>). These data indicate that the c-dECM is a potential biomaterial for constructing vascular tissue engineering scaffolds or developing in vitro models to study the functional mechanisms of endothelial cells.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cell-Derived Basal Membrane-Like Extracellular Matrix Promotes Endothelial Cell Expansion and Functionalization\",\"authors\":\"Jiangwei Xiao, Kai You, Daohuan Lu, Shuwen Guan, Hengpeng Wu, Jing Gao, Yadong Tang, Shan Yu, Botao Gao\",\"doi\":\"10.1002/jbm.a.37893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Engineering cellular microenvironments with biomaterials is an effective strategy for endothelial cell expansion and functionality in vascular tissue engineering. The basement membrane (BM) is a natural vascular endothelium microenvironment that plays an important role in promoting rapid expansion and function of endothelial cells. However, mimicking the crucial function of BM with an ideal biomaterial remains challenging. In this study, we developed a cell-derived decellularized extracellular matrix (c-dECM) paper to mimic the role of BM in endothelial cell expansion and function. The results showed that c-dECM paper was a stable, biocompatible, and biodegradable scaffold that significantly promoted endothelial cell expansion by modulating cell migration, adhesion, and proliferation both in vivo and in vitro. Moreover, the biomimetic c-dECM paper can profoundly promote endothelial cell function by increasing the synthesis and release of nitric oxide (NO) and prostaglandin I2 (PGI2) and upregulating the expression of anticoagulant and vascularized genes, including <i>thrombomodulin</i> (<i>THBD</i>), <i>tissue factor pathway inhibitor</i> (<i>TFPI</i>), <i>endothelial growth factor</i> (<i>VEGF</i>) and <i>endoglin</i> (<i>CD105</i>). These data indicate that the c-dECM is a potential biomaterial for constructing vascular tissue engineering scaffolds or developing in vitro models to study the functional mechanisms of endothelial cells.</p>\\n </div>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 3\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37893\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37893","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Engineering cellular microenvironments with biomaterials is an effective strategy for endothelial cell expansion and functionality in vascular tissue engineering. The basement membrane (BM) is a natural vascular endothelium microenvironment that plays an important role in promoting rapid expansion and function of endothelial cells. However, mimicking the crucial function of BM with an ideal biomaterial remains challenging. In this study, we developed a cell-derived decellularized extracellular matrix (c-dECM) paper to mimic the role of BM in endothelial cell expansion and function. The results showed that c-dECM paper was a stable, biocompatible, and biodegradable scaffold that significantly promoted endothelial cell expansion by modulating cell migration, adhesion, and proliferation both in vivo and in vitro. Moreover, the biomimetic c-dECM paper can profoundly promote endothelial cell function by increasing the synthesis and release of nitric oxide (NO) and prostaglandin I2 (PGI2) and upregulating the expression of anticoagulant and vascularized genes, including thrombomodulin (THBD), tissue factor pathway inhibitor (TFPI), endothelial growth factor (VEGF) and endoglin (CD105). These data indicate that the c-dECM is a potential biomaterial for constructing vascular tissue engineering scaffolds or developing in vitro models to study the functional mechanisms of endothelial cells.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.