{"title":"利用基于循环相变材料的储热技术改善空调性能","authors":"Arun Kumar Sao, Arun Arora, Mukesh Kumar Sahu","doi":"10.1002/est2.70155","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study analyzes the impact of using single and multiple circular phase change materials (PCMs) to enhance the performance of an air-conditioning (AC) unit. The technique involves attaching a heat exchanger containing cold energy storage PCM to the air conditioner's condenser. During the daytime, warm surrounding air is cooled and transmitted to the condenser of the air-conditioning system. The computational study is conducted using the SST k –ω turbulence model. The air inlet temperature to the PCM is kept at 308.15 K, and the air flow rate is kept constant at 49 L/s. The findings indicate that, during the discharging process, the complete melting time for the multi-circular PCM increases by almost 72% compared to the single-circular PCM. Temperature contours reveal that turbulence happens in the solid zone, primarily at higher temperatures, within the PCM melting region. This suggests enhanced convection in this region. The fall in the outlet air temperature is greater for the multi-circular PCM relative to the single-circular PCM. The coefficient of performance (COP) increases by approximately 87.57% for the multi-circular PCM system and 7.60% for the single-circular PCM unit during summer. The power saved by the single-circular PCM is about 0.3792 W for 6 h of operation, while the multi-circular PCM saves approximately 4.3821 W.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Air Conditioning Performance With Circular Phase Change Materials Based Heat Storage\",\"authors\":\"Arun Kumar Sao, Arun Arora, Mukesh Kumar Sahu\",\"doi\":\"10.1002/est2.70155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study analyzes the impact of using single and multiple circular phase change materials (PCMs) to enhance the performance of an air-conditioning (AC) unit. The technique involves attaching a heat exchanger containing cold energy storage PCM to the air conditioner's condenser. During the daytime, warm surrounding air is cooled and transmitted to the condenser of the air-conditioning system. The computational study is conducted using the SST k –ω turbulence model. The air inlet temperature to the PCM is kept at 308.15 K, and the air flow rate is kept constant at 49 L/s. The findings indicate that, during the discharging process, the complete melting time for the multi-circular PCM increases by almost 72% compared to the single-circular PCM. Temperature contours reveal that turbulence happens in the solid zone, primarily at higher temperatures, within the PCM melting region. This suggests enhanced convection in this region. The fall in the outlet air temperature is greater for the multi-circular PCM relative to the single-circular PCM. The coefficient of performance (COP) increases by approximately 87.57% for the multi-circular PCM system and 7.60% for the single-circular PCM unit during summer. The power saved by the single-circular PCM is about 0.3792 W for 6 h of operation, while the multi-circular PCM saves approximately 4.3821 W.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"7 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究分析了使用单个和多个圆形相变材料(PCMs)对提高空调(AC)机组性能的影响。该技术包括将一个包含冷能量储存PCM的热交换器连接到空调的冷凝器上。在白天,周围的热空气被冷却并传送到空调系统的冷凝器。计算研究采用SST k -ω湍流模型。PCM的进风温度保持在308.15 K,气流流速保持在49 L/s。结果表明,在放电过程中,与单圆PCM相比,多圆PCM的完全熔化时间增加了近72%。温度曲线显示湍流发生在固体区域,主要是在高温下,在PCM熔化区内。这表明该区域对流增强。与单圆PCM相比,多圆PCM的出口空气温度下降幅度更大。在夏季,多圆PCM系统的性能系数(COP)提高了约87.57%,单圆PCM机组的性能系数(COP)提高了7.60%。单圆PCM运行6小时节省的功率约为0.3792 W,而多圆PCM节省的功率约为4.3821 W。
Improving Air Conditioning Performance With Circular Phase Change Materials Based Heat Storage
This study analyzes the impact of using single and multiple circular phase change materials (PCMs) to enhance the performance of an air-conditioning (AC) unit. The technique involves attaching a heat exchanger containing cold energy storage PCM to the air conditioner's condenser. During the daytime, warm surrounding air is cooled and transmitted to the condenser of the air-conditioning system. The computational study is conducted using the SST k –ω turbulence model. The air inlet temperature to the PCM is kept at 308.15 K, and the air flow rate is kept constant at 49 L/s. The findings indicate that, during the discharging process, the complete melting time for the multi-circular PCM increases by almost 72% compared to the single-circular PCM. Temperature contours reveal that turbulence happens in the solid zone, primarily at higher temperatures, within the PCM melting region. This suggests enhanced convection in this region. The fall in the outlet air temperature is greater for the multi-circular PCM relative to the single-circular PCM. The coefficient of performance (COP) increases by approximately 87.57% for the multi-circular PCM system and 7.60% for the single-circular PCM unit during summer. The power saved by the single-circular PCM is about 0.3792 W for 6 h of operation, while the multi-circular PCM saves approximately 4.3821 W.