量子代数的刚性

IF 1 2区 数学 Q1 MATHEMATICS
Akaki Tikaradze
{"title":"量子代数的刚性","authors":"Akaki Tikaradze","doi":"10.1112/jlms.70118","DOIUrl":null,"url":null,"abstract":"<p>Given an associative <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbb {C}$</annotation>\n </semantics></math>-algebra <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>, we call <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> strongly rigid if for any pair of finite subgroups of its automorphism groups <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>H</mi>\n </mrow>\n <annotation>$G, H$</annotation>\n </semantics></math>, such that <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>A</mi>\n <mi>G</mi>\n </msup>\n <mo>≅</mo>\n <msup>\n <mi>A</mi>\n <mi>H</mi>\n </msup>\n </mrow>\n <annotation>$A^G\\cong A^H$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> must be isomorphic. In this paper, we show that a large class of filtered quantizations are strongly rigid. We also solve the inverse Galois problem for a wide class of rational Cherednik algebras that includes all (simple) classical generalized Weyl algebras, and also for quantum tori. Finally, we show that the Picard group of an <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional quantum torus is isomorphic to the group of its outer automorphisms.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70118","citationCount":"0","resultStr":"{\"title\":\"Rigidity of quantum algebras\",\"authors\":\"Akaki Tikaradze\",\"doi\":\"10.1112/jlms.70118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given an associative <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathbb {C}$</annotation>\\n </semantics></math>-algebra <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>, we call <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> strongly rigid if for any pair of finite subgroups of its automorphism groups <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$G, H$</annotation>\\n </semantics></math>, such that <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>A</mi>\\n <mi>G</mi>\\n </msup>\\n <mo>≅</mo>\\n <msup>\\n <mi>A</mi>\\n <mi>H</mi>\\n </msup>\\n </mrow>\\n <annotation>$A^G\\\\cong A^H$</annotation>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> must be isomorphic. In this paper, we show that a large class of filtered quantizations are strongly rigid. We also solve the inverse Galois problem for a wide class of rational Cherednik algebras that includes all (simple) classical generalized Weyl algebras, and also for quantum tori. Finally, we show that the Picard group of an <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional quantum torus is isomorphic to the group of its outer automorphisms.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70118\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70118\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70118","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个结合律C $\mathbb {C}$ -代数A$ A$,我们称A$ A$为强刚性,如果对于它的自同构群G, H$ G, H$,使得A G = A H$ A^G\cong $A^ H$,那么G$ G$和H$ H$一定是同构的。在本文中,我们证明了一大类滤波量子化是强刚性的。我们还解决了一类包括所有(简单的)经典广义Weyl代数的有理Cherednik代数和量子环面的逆伽罗瓦问题。最后,我们证明了n$ n$维量子环面的Picard群与其外部自同构群是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of quantum algebras

Given an associative C $\mathbb {C}$ -algebra A $A$ , we call A $A$ strongly rigid if for any pair of finite subgroups of its automorphism groups G , H $G, H$ , such that A G A H $A^G\cong A^H$ , then G $G$ and H $H$ must be isomorphic. In this paper, we show that a large class of filtered quantizations are strongly rigid. We also solve the inverse Galois problem for a wide class of rational Cherednik algebras that includes all (simple) classical generalized Weyl algebras, and also for quantum tori. Finally, we show that the Picard group of an n $n$ -dimensional quantum torus is isomorphic to the group of its outer automorphisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信