作为微分双配合物的双平面f结构和Gauss-Manin连接

IF 0.8 3区 数学 Q2 MATHEMATICS
Alessandro Arsie, Paolo Lorenzoni
{"title":"作为微分双配合物的双平面f结构和Gauss-Manin连接","authors":"Alessandro Arsie,&nbsp;Paolo Lorenzoni","doi":"10.1112/blms.70000","DOIUrl":null,"url":null,"abstract":"<p>We show that a biflat F-structure <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>∇</mo>\n <mo>,</mo>\n <mo>∘</mo>\n <mo>,</mo>\n <mi>e</mi>\n <mo>,</mo>\n <msup>\n <mo>∇</mo>\n <mo>∗</mo>\n </msup>\n <mo>,</mo>\n <mo>∗</mo>\n <mo>,</mo>\n <mi>E</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\nabla,\\circ,e,\\nabla ^*,*,E)$</annotation>\n </semantics></math> on a manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> defines a differential bicomplex <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>d</mi>\n <mo>∇</mo>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>d</mi>\n <mrow>\n <mi>E</mi>\n <mo>∘</mo>\n <msup>\n <mo>∇</mo>\n <mo>∗</mo>\n </msup>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(d_{\\nabla },d_{E\\circ \\nabla ^*})$</annotation>\n </semantics></math> on forms with value on the tangent sheaf of the manifold. Moreover, the sequence of vector fields defined recursively by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>d</mi>\n <mo>∇</mo>\n </msub>\n <msub>\n <mi>X</mi>\n <mrow>\n <mo>(</mo>\n <mi>α</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>d</mi>\n <mrow>\n <mi>E</mi>\n <mo>∘</mo>\n <msup>\n <mo>∇</mo>\n <mo>∗</mo>\n </msup>\n </mrow>\n </msub>\n <msub>\n <mi>X</mi>\n <mrow>\n <mo>(</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n </mrow>\n <annotation>$d_{\\nabla }X_{(\\alpha +1)}=d_{E\\circ \\nabla ^*}X_{(\\alpha)}$</annotation>\n </semantics></math> coincides with the coefficients of the formal expansion of the flat local sections of a family of flat connections <span></span><math>\n <semantics>\n <msup>\n <mo>∇</mo>\n <mrow>\n <mi>G</mi>\n <mi>M</mi>\n </mrow>\n </msup>\n <annotation>$\\nabla ^{GM}$</annotation>\n </semantics></math> associated with the biflat structure. In the case of Dubrovin–Frobenius manifold, the connection <span></span><math>\n <semantics>\n <msup>\n <mo>∇</mo>\n <mrow>\n <mi>G</mi>\n <mi>M</mi>\n </mrow>\n </msup>\n <annotation>$\\nabla ^{GM}$</annotation>\n </semantics></math> (for suitable choice of an auxiliary parameter) can be identified with the Levi–Civita connection of the flat pencil of metrics defined by the invariant metric and the intersection form.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"786-808"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70000","citationCount":"0","resultStr":"{\"title\":\"Biflat F-structures as differential bicomplexes and Gauss–Manin connections\",\"authors\":\"Alessandro Arsie,&nbsp;Paolo Lorenzoni\",\"doi\":\"10.1112/blms.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that a biflat F-structure <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mo>∇</mo>\\n <mo>,</mo>\\n <mo>∘</mo>\\n <mo>,</mo>\\n <mi>e</mi>\\n <mo>,</mo>\\n <msup>\\n <mo>∇</mo>\\n <mo>∗</mo>\\n </msup>\\n <mo>,</mo>\\n <mo>∗</mo>\\n <mo>,</mo>\\n <mi>E</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\nabla,\\\\circ,e,\\\\nabla ^*,*,E)$</annotation>\\n </semantics></math> on a manifold <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> defines a differential bicomplex <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>d</mi>\\n <mo>∇</mo>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>d</mi>\\n <mrow>\\n <mi>E</mi>\\n <mo>∘</mo>\\n <msup>\\n <mo>∇</mo>\\n <mo>∗</mo>\\n </msup>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(d_{\\\\nabla },d_{E\\\\circ \\\\nabla ^*})$</annotation>\\n </semantics></math> on forms with value on the tangent sheaf of the manifold. Moreover, the sequence of vector fields defined recursively by <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>d</mi>\\n <mo>∇</mo>\\n </msub>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>α</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mi>d</mi>\\n <mrow>\\n <mi>E</mi>\\n <mo>∘</mo>\\n <msup>\\n <mo>∇</mo>\\n <mo>∗</mo>\\n </msup>\\n </mrow>\\n </msub>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>α</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$d_{\\\\nabla }X_{(\\\\alpha +1)}=d_{E\\\\circ \\\\nabla ^*}X_{(\\\\alpha)}$</annotation>\\n </semantics></math> coincides with the coefficients of the formal expansion of the flat local sections of a family of flat connections <span></span><math>\\n <semantics>\\n <msup>\\n <mo>∇</mo>\\n <mrow>\\n <mi>G</mi>\\n <mi>M</mi>\\n </mrow>\\n </msup>\\n <annotation>$\\\\nabla ^{GM}$</annotation>\\n </semantics></math> associated with the biflat structure. In the case of Dubrovin–Frobenius manifold, the connection <span></span><math>\\n <semantics>\\n <msup>\\n <mo>∇</mo>\\n <mrow>\\n <mi>G</mi>\\n <mi>M</mi>\\n </mrow>\\n </msup>\\n <annotation>$\\\\nabla ^{GM}$</annotation>\\n </semantics></math> (for suitable choice of an auxiliary parameter) can be identified with the Levi–Civita connection of the flat pencil of metrics defined by the invariant metric and the intersection form.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 3\",\"pages\":\"786-808\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70000\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70000","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个双平面f结构(∇,°,e,∇∗,∗,E) $(\nabla,\circ,e,\nabla ^*,*,E)$在流形M $M$上定义微分双复(d∇,d E°∇∗)$(d_{\nabla },d_{E\circ \nabla ^*})$在流形的切轴上有值的形式。而且,d∇X (α + 1)递归定义的向量场序列=d E°∇∗X (α) $d_{\nabla }X_{(\alpha +1)}=d_{E\circ \nabla ^*}X_{(\alpha)}$与双平面结构相关的一类平面连接∇G M $\nabla ^{GM}$的平面局部截面的形式展开系数相吻合。在Dubrovin-Frobenius流形的情况下,连接∇G M $\nabla ^{GM}$(对于辅助参数的合适选择)可以用由不变度规和相交形式定义的度量的扁平铅笔的Levi-Civita连接来标识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biflat F-structures as differential bicomplexes and Gauss–Manin connections

Biflat F-structures as differential bicomplexes and Gauss–Manin connections

We show that a biflat F-structure ( , , e , , , E ) $(\nabla,\circ,e,\nabla ^*,*,E)$ on a manifold M $M$ defines a differential bicomplex ( d , d E ) $(d_{\nabla },d_{E\circ \nabla ^*})$ on forms with value on the tangent sheaf of the manifold. Moreover, the sequence of vector fields defined recursively by d X ( α + 1 ) = d E X ( α ) $d_{\nabla }X_{(\alpha +1)}=d_{E\circ \nabla ^*}X_{(\alpha)}$ coincides with the coefficients of the formal expansion of the flat local sections of a family of flat connections G M $\nabla ^{GM}$ associated with the biflat structure. In the case of Dubrovin–Frobenius manifold, the connection G M $\nabla ^{GM}$ (for suitable choice of an auxiliary parameter) can be identified with the Levi–Civita connection of the flat pencil of metrics defined by the invariant metric and the intersection form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信