亚精胺通过NF-κB/STAT-1通路抑制帕金森病小鼠模型和BV2细胞的M1小胶质细胞极化

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES
Jun Shu, Yuqiong Jiao, Wenshi Wei, Aijuan Yan
{"title":"亚精胺通过NF-κB/STAT-1通路抑制帕金森病小鼠模型和BV2细胞的M1小胶质细胞极化","authors":"Jun Shu,&nbsp;Yuqiong Jiao,&nbsp;Wenshi Wei,&nbsp;Aijuan Yan","doi":"10.1002/brb3.70410","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Excessively activated M1 microglia release proinflammatory factors that can cause neuronal death and contribute to the development of Parkinson's disease (PD). Recent research indicates that spermidine, a naturally occurring polyamine, may have anti-inflammatory properties. Nonetheless, the specific role of spermidine in Parkinson's disease, particularly how it affects microglia-driven neuroinflammation and the balance between M1 and M2 polarization, is still not fully understood.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We examined the effects of spermidine on the polarization of M1/M2 microglia in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and lipopolysaccharide (LPS)-stimulated BV2 cells. Methods like RT-PCR, western blotting, and immunofluorescence were used to examine how spermidine influences the polarization of microglia.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In vivo, spermidine pretreatment reduced the activation of M1 microglia and encouraged the transformation of microglia into the M2 phenotype in the substantia nigra (SN) of PD mice. Additionally, spermidine decreased the release of inflammatory factors and lessened the death of dopaminergic neurons in the SN of these mice. In vitro, spermidine indirectly protected neurons from death by affecting microglial polarization. Furthermore, spermidine preconditioning led to decreased phosphorylation of NF-κB, STAT1, and p38 MAPK, while enhancing the phosphorylation of STAT6, both in vivo and in vitro. Additionally, we observed that the supernatant from BV2 cells was cultured with SH-SY5Y neurons. The findings revealed that the supernatant from LPS-activated BV2 cells notably reduced the viability of SH-SY5Y cells, as well as the levels of brain-derived neurotrophic factor (BDNF), TrkB, PI3K, and p-AKT. However, these effects were significantly reversed by pretreatment with spermidine.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our research found that spermidine reduced M1 microglial polarization, partially through the inhibition of the NF-κB, STAT1, and p38 MAPK pathways, and encouraged M2 microglial polarization by activating the STAT6 pathway. This action helped to mitigate neuroinflammation in both the MPTP mouse model of Parkinson's disease and LPS-stimulated BV2 cells. Additionally, spermidine provided indirect neuroprotection by activating BDNF-TrkB-PI3K/AKT signaling pathways.</p>\n </section>\n </div>","PeriodicalId":9081,"journal":{"name":"Brain and Behavior","volume":"15 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70410","citationCount":"0","resultStr":"{\"title\":\"Spermidine Inhibits M1 Microglia Polarization in a Mouse Model of Parkinson's Disease and BV2 Cells via NF-κB/STAT-1 Pathway\",\"authors\":\"Jun Shu,&nbsp;Yuqiong Jiao,&nbsp;Wenshi Wei,&nbsp;Aijuan Yan\",\"doi\":\"10.1002/brb3.70410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Excessively activated M1 microglia release proinflammatory factors that can cause neuronal death and contribute to the development of Parkinson's disease (PD). Recent research indicates that spermidine, a naturally occurring polyamine, may have anti-inflammatory properties. Nonetheless, the specific role of spermidine in Parkinson's disease, particularly how it affects microglia-driven neuroinflammation and the balance between M1 and M2 polarization, is still not fully understood.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We examined the effects of spermidine on the polarization of M1/M2 microglia in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and lipopolysaccharide (LPS)-stimulated BV2 cells. Methods like RT-PCR, western blotting, and immunofluorescence were used to examine how spermidine influences the polarization of microglia.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>In vivo, spermidine pretreatment reduced the activation of M1 microglia and encouraged the transformation of microglia into the M2 phenotype in the substantia nigra (SN) of PD mice. Additionally, spermidine decreased the release of inflammatory factors and lessened the death of dopaminergic neurons in the SN of these mice. In vitro, spermidine indirectly protected neurons from death by affecting microglial polarization. Furthermore, spermidine preconditioning led to decreased phosphorylation of NF-κB, STAT1, and p38 MAPK, while enhancing the phosphorylation of STAT6, both in vivo and in vitro. Additionally, we observed that the supernatant from BV2 cells was cultured with SH-SY5Y neurons. The findings revealed that the supernatant from LPS-activated BV2 cells notably reduced the viability of SH-SY5Y cells, as well as the levels of brain-derived neurotrophic factor (BDNF), TrkB, PI3K, and p-AKT. However, these effects were significantly reversed by pretreatment with spermidine.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Our research found that spermidine reduced M1 microglial polarization, partially through the inhibition of the NF-κB, STAT1, and p38 MAPK pathways, and encouraged M2 microglial polarization by activating the STAT6 pathway. This action helped to mitigate neuroinflammation in both the MPTP mouse model of Parkinson's disease and LPS-stimulated BV2 cells. Additionally, spermidine provided indirect neuroprotection by activating BDNF-TrkB-PI3K/AKT signaling pathways.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9081,\"journal\":{\"name\":\"Brain and Behavior\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70410\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70410\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70410","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

过度激活的M1小胶质细胞释放促炎因子,可导致神经元死亡并促进帕金森病(PD)的发展。最近的研究表明,亚精胺是一种天然存在的多胺,可能具有抗炎特性。尽管如此,亚精胺在帕金森病中的具体作用,特别是它如何影响小胶质细胞驱动的神经炎症以及M1和M2极化之间的平衡,仍未完全了解。方法在1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)小鼠PD模型和脂多糖(LPS)刺激的BV2细胞中,研究亚精胺对M1/M2小胶质细胞极化的影响。采用RT-PCR、western blotting、免疫荧光等方法研究亚精胺对小胶质细胞极化的影响。结果在体内,亚精胺预处理降低了PD小鼠黑质M1小胶质细胞的活化,促进了小胶质细胞向M2表型的转化。此外,亚精胺可减少炎症因子的释放,减轻小鼠SN中多巴胺能神经元的死亡。在体外,亚精胺通过影响小胶质细胞极化间接保护神经元免于死亡。此外,在体内和体外,亚精胺预处理导致NF-κB、STAT1和p38 MAPK的磷酸化降低,而STAT6的磷酸化增强。此外,我们观察到BV2细胞的上清液中含有SH-SY5Y神经元。结果显示,lps活化BV2细胞的上清液显著降低SH-SY5Y细胞的活力,以及脑源性神经营养因子(BDNF)、TrkB、PI3K和p-AKT的水平。然而,经亚精胺预处理后,这些效果明显逆转。结论本研究发现亚精胺通过抑制NF-κB、STAT1和p38 MAPK通路减少M1小胶质细胞极化,通过激活STAT6通路促进M2小胶质细胞极化。这一作用有助于减轻帕金森病MPTP小鼠模型和lps刺激的BV2细胞的神经炎症。此外,亚精胺通过激活BDNF-TrkB-PI3K/AKT信号通路提供间接神经保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spermidine Inhibits M1 Microglia Polarization in a Mouse Model of Parkinson's Disease and BV2 Cells via NF-κB/STAT-1 Pathway

Spermidine Inhibits M1 Microglia Polarization in a Mouse Model of Parkinson's Disease and BV2 Cells via NF-κB/STAT-1 Pathway

Background

Excessively activated M1 microglia release proinflammatory factors that can cause neuronal death and contribute to the development of Parkinson's disease (PD). Recent research indicates that spermidine, a naturally occurring polyamine, may have anti-inflammatory properties. Nonetheless, the specific role of spermidine in Parkinson's disease, particularly how it affects microglia-driven neuroinflammation and the balance between M1 and M2 polarization, is still not fully understood.

Methods

We examined the effects of spermidine on the polarization of M1/M2 microglia in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and lipopolysaccharide (LPS)-stimulated BV2 cells. Methods like RT-PCR, western blotting, and immunofluorescence were used to examine how spermidine influences the polarization of microglia.

Results

In vivo, spermidine pretreatment reduced the activation of M1 microglia and encouraged the transformation of microglia into the M2 phenotype in the substantia nigra (SN) of PD mice. Additionally, spermidine decreased the release of inflammatory factors and lessened the death of dopaminergic neurons in the SN of these mice. In vitro, spermidine indirectly protected neurons from death by affecting microglial polarization. Furthermore, spermidine preconditioning led to decreased phosphorylation of NF-κB, STAT1, and p38 MAPK, while enhancing the phosphorylation of STAT6, both in vivo and in vitro. Additionally, we observed that the supernatant from BV2 cells was cultured with SH-SY5Y neurons. The findings revealed that the supernatant from LPS-activated BV2 cells notably reduced the viability of SH-SY5Y cells, as well as the levels of brain-derived neurotrophic factor (BDNF), TrkB, PI3K, and p-AKT. However, these effects were significantly reversed by pretreatment with spermidine.

Conclusion

Our research found that spermidine reduced M1 microglial polarization, partially through the inhibition of the NF-κB, STAT1, and p38 MAPK pathways, and encouraged M2 microglial polarization by activating the STAT6 pathway. This action helped to mitigate neuroinflammation in both the MPTP mouse model of Parkinson's disease and LPS-stimulated BV2 cells. Additionally, spermidine provided indirect neuroprotection by activating BDNF-TrkB-PI3K/AKT signaling pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain and Behavior
Brain and Behavior BEHAVIORAL SCIENCES-NEUROSCIENCES
CiteScore
5.30
自引率
0.00%
发文量
352
审稿时长
14 weeks
期刊介绍: Brain and Behavior is supported by other journals published by Wiley, including a number of society-owned journals. The journals listed below support Brain and Behavior and participate in the Manuscript Transfer Program by referring articles of suitable quality and offering authors the option to have their paper, with any peer review reports, automatically transferred to Brain and Behavior. * [Acta Psychiatrica Scandinavica](https://publons.com/journal/1366/acta-psychiatrica-scandinavica) * [Addiction Biology](https://publons.com/journal/1523/addiction-biology) * [Aggressive Behavior](https://publons.com/journal/3611/aggressive-behavior) * [Brain Pathology](https://publons.com/journal/1787/brain-pathology) * [Child: Care, Health and Development](https://publons.com/journal/6111/child-care-health-and-development) * [Criminal Behaviour and Mental Health](https://publons.com/journal/3839/criminal-behaviour-and-mental-health) * [Depression and Anxiety](https://publons.com/journal/1528/depression-and-anxiety) * Developmental Neurobiology * [Developmental Science](https://publons.com/journal/1069/developmental-science) * [European Journal of Neuroscience](https://publons.com/journal/1441/european-journal-of-neuroscience) * [Genes, Brain and Behavior](https://publons.com/journal/1635/genes-brain-and-behavior) * [GLIA](https://publons.com/journal/1287/glia) * [Hippocampus](https://publons.com/journal/1056/hippocampus) * [Human Brain Mapping](https://publons.com/journal/500/human-brain-mapping) * [Journal for the Theory of Social Behaviour](https://publons.com/journal/7330/journal-for-the-theory-of-social-behaviour) * [Journal of Comparative Neurology](https://publons.com/journal/1306/journal-of-comparative-neurology) * [Journal of Neuroimaging](https://publons.com/journal/6379/journal-of-neuroimaging) * [Journal of Neuroscience Research](https://publons.com/journal/2778/journal-of-neuroscience-research) * [Journal of Organizational Behavior](https://publons.com/journal/1123/journal-of-organizational-behavior) * [Journal of the Peripheral Nervous System](https://publons.com/journal/3929/journal-of-the-peripheral-nervous-system) * [Muscle & Nerve](https://publons.com/journal/4448/muscle-and-nerve) * [Neural Pathology and Applied Neurobiology](https://publons.com/journal/2401/neuropathology-and-applied-neurobiology)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信