关于平行集的体积和表面积。2。体积的表面度量和(非)可微性

IF 0.8 3区 数学 Q2 MATHEMATICS
Jan Rataj, Steffen Winter
{"title":"关于平行集的体积和表面积。2。体积的表面度量和(非)可微性","authors":"Jan Rataj,&nbsp;Steffen Winter","doi":"10.1112/blms.70006","DOIUrl":null,"url":null,"abstract":"<p>We prove that at differentiability points <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mn>0</mn>\n </msub>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$r_0&gt;0$</annotation>\n </semantics></math> of the volume function of a compact set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$A\\subset \\mathbb {R}^d$</annotation>\n </semantics></math> (associating to <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math> the volume of the <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-parallel set of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>), the surface area measures of <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-parallel sets of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> converge weakly to the surface area measure of the <span></span><math>\n <semantics>\n <msub>\n <mi>r</mi>\n <mn>0</mn>\n </msub>\n <annotation>$r_0$</annotation>\n </semantics></math>-parallel set as <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>→</mo>\n <msub>\n <mi>r</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation>$r\\rightarrow r_0$</annotation>\n </semantics></math>. We further study the question which sets of parallel radii can occur as sets of nondifferentiability points of the volume function of some compact set. We provide a full characterization for dimensions <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d=1$</annotation>\n </semantics></math> and 2.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"895-912"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70006","citationCount":"0","resultStr":"{\"title\":\"On volume and surface area of parallel sets. II. Surface measures and (non)differentiability of the volume\",\"authors\":\"Jan Rataj,&nbsp;Steffen Winter\",\"doi\":\"10.1112/blms.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that at differentiability points <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$r_0&gt;0$</annotation>\\n </semantics></math> of the volume function of a compact set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$A\\\\subset \\\\mathbb {R}^d$</annotation>\\n </semantics></math> (associating to <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math> the volume of the <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-parallel set of <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>), the surface area measures of <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-parallel sets of <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> converge weakly to the surface area measure of the <span></span><math>\\n <semantics>\\n <msub>\\n <mi>r</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$r_0$</annotation>\\n </semantics></math>-parallel set as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>→</mo>\\n <msub>\\n <mi>r</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n <annotation>$r\\\\rightarrow r_0$</annotation>\\n </semantics></math>. We further study the question which sets of parallel radii can occur as sets of nondifferentiability points of the volume function of some compact set. We provide a full characterization for dimensions <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$d=1$</annotation>\\n </semantics></math> and 2.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 3\",\"pages\":\"895-912\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70006\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70006","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在可导点r 0 >;紧集a的0$ r_0>0$的体积函数∧R d$ a \子集\mathbb {R}^d$(将R $ R $的体积关联到R $ R $)$r$ - A$ A$的平行集),A$ A$的r$ r$平行集的表面积测度弱收敛于r$ r_0$平行集的表面积测度为r→R 0$ R \右转r_0$。进一步研究了平行半径的集合是否可以作为紧集的体积函数的不可微点的集合。我们提供了维度d=1$ d=1$和2的完整表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On volume and surface area of parallel sets. II. Surface measures and (non)differentiability of the volume

We prove that at differentiability points r 0 > 0 $r_0>0$ of the volume function of a compact set A R d $A\subset \mathbb {R}^d$ (associating to r $r$ the volume of the r $r$ -parallel set of A $A$ ), the surface area measures of r $r$ -parallel sets of A $A$ converge weakly to the surface area measure of the r 0 $r_0$ -parallel set as r r 0 $r\rightarrow r_0$ . We further study the question which sets of parallel radii can occur as sets of nondifferentiability points of the volume function of some compact set. We provide a full characterization for dimensions d = 1 $d=1$ and 2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信