Zn/Cu或Zn/Co离子的共掺入提高了PEOT/PBT -βTCP复合3d打印支架的骨再生潜力

IF 4 Q2 ENGINEERING, BIOMEDICAL
Martyna Nikody, Jiaping Li, David Koper, Elizabeth R. Balmayor, Pamela Habibovic, Lorenzo Moroni
{"title":"Zn/Cu或Zn/Co离子的共掺入提高了PEOT/PBT -βTCP复合3d打印支架的骨再生潜力","authors":"Martyna Nikody,&nbsp;Jiaping Li,&nbsp;David Koper,&nbsp;Elizabeth R. Balmayor,&nbsp;Pamela Habibovic,&nbsp;Lorenzo Moroni","doi":"10.1002/anbr.202400139","DOIUrl":null,"url":null,"abstract":"<p>Treatment of critical-sized bone defects remains challenging despite bone's regenerative capacity. Herein, a combination of a biodegradable polymer possessing bone-bonding properties with bioactive β-tricalcium phosphate (βTCP) particles coated with osteogenic (Zinc) and angiogenic (copper or cobalt) ions has been proposed. βTCP was coated with zinc and copper (Zn/Cu) or zinc and cobalt (Zn/Co) using 15 mM (low) or 45 mM (high) metallic ion solutions. Composites were obtained by a combination of the βTCP with poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer in a 50:50 ratio. Composites were additively manufactured into 3D porous scaffolds and their osteogenic and angiogenic properties evaluated using a direct culture with human mesenchymal stromal cells (hMSCs) as well as an indirect coculture with human umbilical vein endothelial cells (HUVECs). We hypothesized that the combination of Zn/Cu or Zn/Co in the form of a coating of the βTCP particles would stimulate both osteogenic and angiogenic properties of PEOT/PBT-βTCP scaffolds. In addition, we investigated whether the resulting biomaterials influenced the paracrine function of hMSCs. Zn/Cu or Zn/Co were successfully co-incorporated into the ceramic without changing its chemistry. Scaffolds containing low concentrations of Zn/Co increased the expression of RUNX2, OCN, and OPN, while scaffolds with low concentrations of Zn/Cu enhanced the expression of ALPL. On the protein level, high Zn/Co concentrations elevated ALP and collagen production. Angiogenic properties improved with increased <i>VEGFA</i> expression by hMSCs and branching of tubules formed by HUVECs, particularly with low concentrations of Zn/Co. Scaffolds with high ion concentrations also increased cytokine and chemokine secretion, suggesting enhanced paracrine effects.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 3","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400139","citationCount":"0","resultStr":"{\"title\":\"The Co-Incorporation of Zn/Cu or Zn/Co Ions Improves the Bone Regeneration Potential of PEOT/PBT–βTCP Composite 3D-Printed Scaffolds\",\"authors\":\"Martyna Nikody,&nbsp;Jiaping Li,&nbsp;David Koper,&nbsp;Elizabeth R. Balmayor,&nbsp;Pamela Habibovic,&nbsp;Lorenzo Moroni\",\"doi\":\"10.1002/anbr.202400139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Treatment of critical-sized bone defects remains challenging despite bone's regenerative capacity. Herein, a combination of a biodegradable polymer possessing bone-bonding properties with bioactive β-tricalcium phosphate (βTCP) particles coated with osteogenic (Zinc) and angiogenic (copper or cobalt) ions has been proposed. βTCP was coated with zinc and copper (Zn/Cu) or zinc and cobalt (Zn/Co) using 15 mM (low) or 45 mM (high) metallic ion solutions. Composites were obtained by a combination of the βTCP with poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer in a 50:50 ratio. Composites were additively manufactured into 3D porous scaffolds and their osteogenic and angiogenic properties evaluated using a direct culture with human mesenchymal stromal cells (hMSCs) as well as an indirect coculture with human umbilical vein endothelial cells (HUVECs). We hypothesized that the combination of Zn/Cu or Zn/Co in the form of a coating of the βTCP particles would stimulate both osteogenic and angiogenic properties of PEOT/PBT-βTCP scaffolds. In addition, we investigated whether the resulting biomaterials influenced the paracrine function of hMSCs. Zn/Cu or Zn/Co were successfully co-incorporated into the ceramic without changing its chemistry. Scaffolds containing low concentrations of Zn/Co increased the expression of RUNX2, OCN, and OPN, while scaffolds with low concentrations of Zn/Cu enhanced the expression of ALPL. On the protein level, high Zn/Co concentrations elevated ALP and collagen production. Angiogenic properties improved with increased <i>VEGFA</i> expression by hMSCs and branching of tubules formed by HUVECs, particularly with low concentrations of Zn/Co. Scaffolds with high ion concentrations also increased cytokine and chemokine secretion, suggesting enhanced paracrine effects.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"5 3\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400139\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管骨具有再生能力,但治疗临界大小的骨缺损仍然具有挑战性。本文提出了一种具有骨结合特性的可生物降解聚合物与具有生物活性的β-磷酸三钙(βTCP)颗粒的组合,这些颗粒被成骨(锌)和血管生成(铜或钴)离子包裹。βTCP采用15 mM(低)或45 mM(高)金属离子溶液涂覆锌铜(Zn/Cu)或锌钴(Zn/Co)。将βTCP与聚环氧对苯二甲酸乙酯/聚对苯二甲酸丁二酯(PEOT/PBT)共聚物以50:50的比例组合得到复合材料。复合材料被增材制造成3D多孔支架,并通过与人间充质基质细胞(hMSCs)的直接培养以及与人脐静脉内皮细胞(HUVECs)的间接共培养来评估其成骨和血管生成性能。我们假设Zn/Cu或Zn/Co以βTCP颗粒涂层的形式结合会刺激PEOT/PBT-βTCP支架的成骨和血管生成性能。此外,我们还研究了所得到的生物材料是否会影响hMSCs的旁分泌功能。在不改变其化学性质的情况下,成功地将Zn/Cu或Zn/Co掺入陶瓷中。低Zn/Co浓度的支架增加了RUNX2、OCN和OPN的表达,低Zn/Cu浓度的支架增强了ALPL的表达。在蛋白质水平上,高Zn/Co浓度增加了ALP和胶原蛋白的产生。血管生成特性随着hMSCs中VEGFA表达的增加和huvec形成的小管分支的增加而改善,特别是在低浓度的Zn/Co下。高离子浓度的支架也增加了细胞因子和趋化因子的分泌,表明增强了旁分泌作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Co-Incorporation of Zn/Cu or Zn/Co Ions Improves the Bone Regeneration Potential of PEOT/PBT–βTCP Composite 3D-Printed Scaffolds

The Co-Incorporation of Zn/Cu or Zn/Co Ions Improves the Bone Regeneration Potential of PEOT/PBT–βTCP Composite 3D-Printed Scaffolds

Treatment of critical-sized bone defects remains challenging despite bone's regenerative capacity. Herein, a combination of a biodegradable polymer possessing bone-bonding properties with bioactive β-tricalcium phosphate (βTCP) particles coated with osteogenic (Zinc) and angiogenic (copper or cobalt) ions has been proposed. βTCP was coated with zinc and copper (Zn/Cu) or zinc and cobalt (Zn/Co) using 15 mM (low) or 45 mM (high) metallic ion solutions. Composites were obtained by a combination of the βTCP with poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer in a 50:50 ratio. Composites were additively manufactured into 3D porous scaffolds and their osteogenic and angiogenic properties evaluated using a direct culture with human mesenchymal stromal cells (hMSCs) as well as an indirect coculture with human umbilical vein endothelial cells (HUVECs). We hypothesized that the combination of Zn/Cu or Zn/Co in the form of a coating of the βTCP particles would stimulate both osteogenic and angiogenic properties of PEOT/PBT-βTCP scaffolds. In addition, we investigated whether the resulting biomaterials influenced the paracrine function of hMSCs. Zn/Cu or Zn/Co were successfully co-incorporated into the ceramic without changing its chemistry. Scaffolds containing low concentrations of Zn/Co increased the expression of RUNX2, OCN, and OPN, while scaffolds with low concentrations of Zn/Cu enhanced the expression of ALPL. On the protein level, high Zn/Co concentrations elevated ALP and collagen production. Angiogenic properties improved with increased VEGFA expression by hMSCs and branching of tubules formed by HUVECs, particularly with low concentrations of Zn/Co. Scaffolds with high ion concentrations also increased cytokine and chemokine secretion, suggesting enhanced paracrine effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信