{"title":"具有杀戮场的洛伦兹曲面的共形类","authors":"Pierre Mounoud","doi":"10.1112/blms.70010","DOIUrl":null,"url":null,"abstract":"<p>We study the conformal classes of two-dimensional Lorentzian tori with (nonzero) Killing fields. We define a map that associate to such a class a vector field on the circle (up to a scalar factor). This map is not injective but has finite-dimensional fiber. It allows us to characterize the conformal classes of tori with Killing field satisfying a condition related to the existence of conjugate points given by Mehidi.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"964-977"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal classes of Lorentzian surfaces with Killing fields\",\"authors\":\"Pierre Mounoud\",\"doi\":\"10.1112/blms.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the conformal classes of two-dimensional Lorentzian tori with (nonzero) Killing fields. We define a map that associate to such a class a vector field on the circle (up to a scalar factor). This map is not injective but has finite-dimensional fiber. It allows us to characterize the conformal classes of tori with Killing field satisfying a condition related to the existence of conjugate points given by Mehidi.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 3\",\"pages\":\"964-977\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70010\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Conformal classes of Lorentzian surfaces with Killing fields
We study the conformal classes of two-dimensional Lorentzian tori with (nonzero) Killing fields. We define a map that associate to such a class a vector field on the circle (up to a scalar factor). This map is not injective but has finite-dimensional fiber. It allows us to characterize the conformal classes of tori with Killing field satisfying a condition related to the existence of conjugate points given by Mehidi.