基于物理导向的疲劳寿命概率预测神经网络

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Shan Jiang, Yingchun Zhang, Wei Zhang
{"title":"基于物理导向的疲劳寿命概率预测神经网络","authors":"Shan Jiang,&nbsp;Yingchun Zhang,&nbsp;Wei Zhang","doi":"10.1111/ffe.14557","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A Physics-guided Neural Network (PgNN) is proposed to provide a robust probability distribution of fatigue life under arbitrary multiple overloads, which integrates the physical mechanism model (PMM) and neural network (NN). Notably, the proposed PgNNs are trained solely using data under constant amplitude loading scenarios. Firstly, a PMM is developed to predict fatigue life based on linear elastic fracture mechanics, considering crack closure. A data preprocessing approach informing PMM is presented, transforming arbitrary overload conditions into equivalent constant amplitude loading with stress ratio \n<span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ \\mathrm{R}&amp;#x0003D;0 $$</annotation>\n </semantics></math>. Moreover, a back-propagation NN is constructed, where a loss function integrating the PMM and mean square error is designed. The PgNN framework encompasses the uncertainties associated with stress levels, material coefficients and equivalent initial flaw size. The fatigue data of aluminum alloy 7075-T6 and Al-Li alloy 2060 are used for model validation. The results affirm that the PgNN exhibits superior accuracy and robustness.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 4","pages":"1612-1629"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Physics-Guided Neural Network for Probabilistic Fatigue Life Prediction Under Multiple Overload Effects\",\"authors\":\"Shan Jiang,&nbsp;Yingchun Zhang,&nbsp;Wei Zhang\",\"doi\":\"10.1111/ffe.14557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A Physics-guided Neural Network (PgNN) is proposed to provide a robust probability distribution of fatigue life under arbitrary multiple overloads, which integrates the physical mechanism model (PMM) and neural network (NN). Notably, the proposed PgNNs are trained solely using data under constant amplitude loading scenarios. Firstly, a PMM is developed to predict fatigue life based on linear elastic fracture mechanics, considering crack closure. A data preprocessing approach informing PMM is presented, transforming arbitrary overload conditions into equivalent constant amplitude loading with stress ratio \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ \\\\mathrm{R}&amp;#x0003D;0 $$</annotation>\\n </semantics></math>. Moreover, a back-propagation NN is constructed, where a loss function integrating the PMM and mean square error is designed. The PgNN framework encompasses the uncertainties associated with stress levels, material coefficients and equivalent initial flaw size. The fatigue data of aluminum alloy 7075-T6 and Al-Li alloy 2060 are used for model validation. The results affirm that the PgNN exhibits superior accuracy and robustness.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 4\",\"pages\":\"1612-1629\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14557\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14557","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

将物理机制模型(PMM)与神经网络(NN)相结合,提出了一种物理引导神经网络(PgNN)来提供任意多重过载下疲劳寿命的鲁棒概率分布。值得注意的是,所提出的pgnn仅使用恒幅加载场景下的数据进行训练。首先,建立了考虑裂纹闭合的线弹性断裂力学疲劳寿命预测模型;提出了一种通知PMM的数据预处理方法,将任意过载条件转化为应力比R = 0 $$ \mathrm{R}&#x0003D;0 $$的等效恒幅加载。此外,构造了一个反向传播神经网络,其中设计了一个积分PMM和均方误差的损失函数。PgNN框架包含与应力水平、材料系数和等效初始缺陷尺寸相关的不确定性。采用7075-T6铝合金和2060铝锂合金的疲劳数据进行模型验证。结果表明,PgNN具有较好的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Physics-Guided Neural Network for Probabilistic Fatigue Life Prediction Under Multiple Overload Effects

A Physics-guided Neural Network (PgNN) is proposed to provide a robust probability distribution of fatigue life under arbitrary multiple overloads, which integrates the physical mechanism model (PMM) and neural network (NN). Notably, the proposed PgNNs are trained solely using data under constant amplitude loading scenarios. Firstly, a PMM is developed to predict fatigue life based on linear elastic fracture mechanics, considering crack closure. A data preprocessing approach informing PMM is presented, transforming arbitrary overload conditions into equivalent constant amplitude loading with stress ratio R = 0 $$ \mathrm{R}&#x0003D;0 $$ . Moreover, a back-propagation NN is constructed, where a loss function integrating the PMM and mean square error is designed. The PgNN framework encompasses the uncertainties associated with stress levels, material coefficients and equivalent initial flaw size. The fatigue data of aluminum alloy 7075-T6 and Al-Li alloy 2060 are used for model validation. The results affirm that the PgNN exhibits superior accuracy and robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信