在原始根上的Artin猜想中密度的一致界

IF 0.8 3区 数学 Q2 MATHEMATICS
Antonella Perucca, Igor E. Shparlinski
{"title":"在原始根上的Artin猜想中密度的一致界","authors":"Antonella Perucca,&nbsp;Igor E. Shparlinski","doi":"10.1112/blms.70011","DOIUrl":null,"url":null,"abstract":"<p>We consider Artin's conjecture on primitive roots over a number field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, reducing an algebraic number <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <msup>\n <mi>K</mi>\n <mo>×</mo>\n </msup>\n </mrow>\n <annotation>$\\alpha \\in K^\\times$</annotation>\n </semantics></math>. Under the Generalised Riemann Hypothesis, there is a density <span></span><math>\n <semantics>\n <mrow>\n <mo>dens</mo>\n <mo>(</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{dens}(\\alpha)$</annotation>\n </semantics></math> counting the proportion of the primes of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> for which <span></span><math>\n <semantics>\n <mi>α</mi>\n <annotation>$\\alpha$</annotation>\n </semantics></math> is a primitive root. This density <span></span><math>\n <semantics>\n <mrow>\n <mo>dens</mo>\n <mo>(</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{dens}(\\alpha)$</annotation>\n </semantics></math> is a rational multiple of an Artin constant <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>(</mo>\n <mi>τ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$A(\\tau)$</annotation>\n </semantics></math> that depends on the largest integer <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\tau \\geqslant 1$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <msup>\n <mfenced>\n <msup>\n <mi>K</mi>\n <mo>×</mo>\n </msup>\n </mfenced>\n <mi>τ</mi>\n </msup>\n </mrow>\n <annotation>$\\alpha \\in {\\left(K^\\times \\right)}^\\tau$</annotation>\n </semantics></math>. The aim of this paper is bounding the ratio <span></span><math>\n <semantics>\n <mrow>\n <mo>dens</mo>\n <mo>(</mo>\n <mi>α</mi>\n <mo>)</mo>\n <mo>/</mo>\n <mi>A</mi>\n <mo>(</mo>\n <mi>τ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{dens}(\\alpha)/A(\\tau)$</annotation>\n </semantics></math>, under the assumption that <span></span><math>\n <semantics>\n <mrow>\n <mo>dens</mo>\n <mo>(</mo>\n <mi>α</mi>\n <mo>)</mo>\n <mo>≠</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\operatorname{dens}(\\alpha)\\ne 0$</annotation>\n </semantics></math>. Over <span></span><math>\n <semantics>\n <mi>Q</mi>\n <annotation>$\\mathbb {Q}$</annotation>\n </semantics></math>, this ratio is between <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$2/3$</annotation>\n </semantics></math> and 2, these bounds being optimal. For a general number field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, we provide upper and lower bounds that only depend on <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"978-991"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70011","citationCount":"0","resultStr":"{\"title\":\"Uniform bounds for the density in Artin's conjecture on primitive roots\",\"authors\":\"Antonella Perucca,&nbsp;Igor E. Shparlinski\",\"doi\":\"10.1112/blms.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider Artin's conjecture on primitive roots over a number field <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>, reducing an algebraic number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>K</mi>\\n <mo>×</mo>\\n </msup>\\n </mrow>\\n <annotation>$\\\\alpha \\\\in K^\\\\times$</annotation>\\n </semantics></math>. Under the Generalised Riemann Hypothesis, there is a density <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dens</mo>\\n <mo>(</mo>\\n <mi>α</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{dens}(\\\\alpha)$</annotation>\\n </semantics></math> counting the proportion of the primes of <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> for which <span></span><math>\\n <semantics>\\n <mi>α</mi>\\n <annotation>$\\\\alpha$</annotation>\\n </semantics></math> is a primitive root. This density <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dens</mo>\\n <mo>(</mo>\\n <mi>α</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{dens}(\\\\alpha)$</annotation>\\n </semantics></math> is a rational multiple of an Artin constant <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>(</mo>\\n <mi>τ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$A(\\\\tau)$</annotation>\\n </semantics></math> that depends on the largest integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\tau \\\\geqslant 1$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>∈</mo>\\n <msup>\\n <mfenced>\\n <msup>\\n <mi>K</mi>\\n <mo>×</mo>\\n </msup>\\n </mfenced>\\n <mi>τ</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\alpha \\\\in {\\\\left(K^\\\\times \\\\right)}^\\\\tau$</annotation>\\n </semantics></math>. The aim of this paper is bounding the ratio <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dens</mo>\\n <mo>(</mo>\\n <mi>α</mi>\\n <mo>)</mo>\\n <mo>/</mo>\\n <mi>A</mi>\\n <mo>(</mo>\\n <mi>τ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{dens}(\\\\alpha)/A(\\\\tau)$</annotation>\\n </semantics></math>, under the assumption that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dens</mo>\\n <mo>(</mo>\\n <mi>α</mi>\\n <mo>)</mo>\\n <mo>≠</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\operatorname{dens}(\\\\alpha)\\\\ne 0$</annotation>\\n </semantics></math>. Over <span></span><math>\\n <semantics>\\n <mi>Q</mi>\\n <annotation>$\\\\mathbb {Q}$</annotation>\\n </semantics></math>, this ratio is between <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>/</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$2/3$</annotation>\\n </semantics></math> and 2, these bounds being optimal. For a general number field <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>, we provide upper and lower bounds that only depend on <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 3\",\"pages\":\"978-991\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70011\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在一个数域K $K$上的关于原始根的Artin猜想,约简一个代数数α∈K × $\alpha \in K^\times$。在广义黎曼假设下,存在一个密度den (α) $\operatorname{dens}(\alpha)$,计算K $K$中α $\alpha$为原始根的素数的比例。该密度den (α) $\operatorname{dens}(\alpha)$是取决于最大整数的Artin常数a (τ) $A(\tau)$的有理倍数τ≠1 $\tau \geqslant 1$使得α∈K × τ$\alpha \in {\left(K^\times \right)}^\tau$。本文的目的是限定比率den (α) / A (τ) $\operatorname{dens}(\alpha)/A(\tau)$,假设den (α)≠0 $\operatorname{dens}(\alpha)\ne 0$。除以Q $\mathbb {Q}$,比值在2 / 3 $2/3$和2之间,这些界限是最优的。对于一般数字域K $K$,我们提供了只依赖于K $K$的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform bounds for the density in Artin's conjecture on primitive roots

We consider Artin's conjecture on primitive roots over a number field K $K$ , reducing an algebraic number α K × $\alpha \in K^\times$ . Under the Generalised Riemann Hypothesis, there is a density dens ( α ) $\operatorname{dens}(\alpha)$ counting the proportion of the primes of K $K$ for which α $\alpha$ is a primitive root. This density dens ( α ) $\operatorname{dens}(\alpha)$ is a rational multiple of an Artin constant A ( τ ) $A(\tau)$ that depends on the largest integer τ 1 $\tau \geqslant 1$ such that α K × τ $\alpha \in {\left(K^\times \right)}^\tau$ . The aim of this paper is bounding the ratio dens ( α ) / A ( τ ) $\operatorname{dens}(\alpha)/A(\tau)$ , under the assumption that dens ( α ) 0 $\operatorname{dens}(\alpha)\ne 0$ . Over Q $\mathbb {Q}$ , this ratio is between 2 / 3 $2/3$ and 2, these bounds being optimal. For a general number field K $K$ , we provide upper and lower bounds that only depend on K $K$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信