光滑4流形的Torelli群和Dehn扭转

IF 0.8 3区 数学 Q2 MATHEMATICS
Manuel Krannich, Alexander Kupers
{"title":"光滑4流形的Torelli群和Dehn扭转","authors":"Manuel Krannich,&nbsp;Alexander Kupers","doi":"10.1112/blms.70009","DOIUrl":null,"url":null,"abstract":"<p>This note has two related but independent parts. Firstly, we prove a generalisation of a recent result of Gay on the smooth mapping class group of <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>4</mn>\n </msup>\n <annotation>$S^4$</annotation>\n </semantics></math>. Secondly, we give an alternative proof of a consequence of work of Saeki, namely that the Dehn twist along the boundary sphere of a simply connected closed smooth 4-manifold <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>X</mi>\n <mo>≅</mo>\n <msup>\n <mi>S</mi>\n <mn>3</mn>\n </msup>\n </mrow>\n <annotation>$\\partial X\\cong S^3$</annotation>\n </semantics></math> is trivial after taking connected sums with enough copies of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$S^2\\times S^2$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"956-963"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70009","citationCount":"0","resultStr":"{\"title\":\"On Torelli groups and Dehn twists of smooth 4-manifolds\",\"authors\":\"Manuel Krannich,&nbsp;Alexander Kupers\",\"doi\":\"10.1112/blms.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This note has two related but independent parts. Firstly, we prove a generalisation of a recent result of Gay on the smooth mapping class group of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>4</mn>\\n </msup>\\n <annotation>$S^4$</annotation>\\n </semantics></math>. Secondly, we give an alternative proof of a consequence of work of Saeki, namely that the Dehn twist along the boundary sphere of a simply connected closed smooth 4-manifold <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>X</mi>\\n <mo>≅</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>3</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\partial X\\\\cong S^3$</annotation>\\n </semantics></math> is trivial after taking connected sums with enough copies of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$S^2\\\\times S^2$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 3\",\"pages\":\"956-963\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70009\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这个音符有两个相关但独立的部分。首先,我们证明了Gay在S 4的光滑映射类群$S^4$上的一个最新结果的推广。其次,我们给出了Saeki工作结果的另一种证明,即沿单连通闭合光滑4流形X $X$与∂X≠s3 $\partial X\cong S^3$的边界球的Dehn扭转在取足够的连通和后是平凡的s2 × s2的副本$S^2\times S^2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Torelli groups and Dehn twists of smooth 4-manifolds

On Torelli groups and Dehn twists of smooth 4-manifolds

This note has two related but independent parts. Firstly, we prove a generalisation of a recent result of Gay on the smooth mapping class group of S 4 $S^4$ . Secondly, we give an alternative proof of a consequence of work of Saeki, namely that the Dehn twist along the boundary sphere of a simply connected closed smooth 4-manifold X $X$ with X S 3 $\partial X\cong S^3$ is trivial after taking connected sums with enough copies of S 2 × S 2 $S^2\times S^2$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信