{"title":"系数缓慢增长的多项式的全伽罗瓦群","authors":"Lior Bary-Soroker, Noam Goldgraber","doi":"10.1112/blms.70008","DOIUrl":null,"url":null,"abstract":"<p>Choose a polynomial <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> uniformly at random from the set of all monic polynomials of degree <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> with integer coefficients in the box <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mi>L</mi>\n <mo>,</mo>\n <mi>L</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n <annotation>$[-L,L]^n$</annotation>\n </semantics></math>. The main result of the paper asserts that if <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>=</mo>\n <mi>L</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$L=L(n)$</annotation>\n </semantics></math> grows to infinity, then the Galois group of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is the full symmetric group, asymptotically almost surely, as <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$n\\rightarrow \\infty$</annotation>\n </semantics></math>. When <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> grows rapidly to infinity, say <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>></mo>\n <msup>\n <mi>n</mi>\n <mn>7</mn>\n </msup>\n </mrow>\n <annotation>$L>n^7$</annotation>\n </semantics></math>, this theorem follows from a result of Gallagher. When <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> is bounded, the analog of the theorem is open, while the state-of-the-art is that the Galois group is large in the sense that it contains the alternating group (if <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo><</mo>\n <mn>17</mn>\n </mrow>\n <annotation>$L< 17$</annotation>\n </semantics></math>, it is conditional on the Extended Riemann Hypothesis). Hence the most interesting case of the theorem is when <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> grows slowly to infinity. Our method works for more general independent coefficients.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 3","pages":"941-955"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full Galois groups of polynomials with slowly growing coefficients\",\"authors\":\"Lior Bary-Soroker, Noam Goldgraber\",\"doi\":\"10.1112/blms.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Choose a polynomial <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> uniformly at random from the set of all monic polynomials of degree <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> with integer coefficients in the box <span></span><math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>[</mo>\\n <mo>−</mo>\\n <mi>L</mi>\\n <mo>,</mo>\\n <mi>L</mi>\\n <mo>]</mo>\\n </mrow>\\n <mi>n</mi>\\n </msup>\\n <annotation>$[-L,L]^n$</annotation>\\n </semantics></math>. The main result of the paper asserts that if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>=</mo>\\n <mi>L</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$L=L(n)$</annotation>\\n </semantics></math> grows to infinity, then the Galois group of <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> is the full symmetric group, asymptotically almost surely, as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$n\\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>. When <span></span><math>\\n <semantics>\\n <mi>L</mi>\\n <annotation>$L$</annotation>\\n </semantics></math> grows rapidly to infinity, say <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>></mo>\\n <msup>\\n <mi>n</mi>\\n <mn>7</mn>\\n </msup>\\n </mrow>\\n <annotation>$L>n^7$</annotation>\\n </semantics></math>, this theorem follows from a result of Gallagher. When <span></span><math>\\n <semantics>\\n <mi>L</mi>\\n <annotation>$L$</annotation>\\n </semantics></math> is bounded, the analog of the theorem is open, while the state-of-the-art is that the Galois group is large in the sense that it contains the alternating group (if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo><</mo>\\n <mn>17</mn>\\n </mrow>\\n <annotation>$L< 17$</annotation>\\n </semantics></math>, it is conditional on the Extended Riemann Hypothesis). Hence the most interesting case of the theorem is when <span></span><math>\\n <semantics>\\n <mi>L</mi>\\n <annotation>$L$</annotation>\\n </semantics></math> grows slowly to infinity. Our method works for more general independent coefficients.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 3\",\"pages\":\"941-955\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70008\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70008","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
从方框[−L]中所有n次$n$的整数系数一元多项式集合中均匀随机地选择一个多项式f $f$,L] n $[-L,L]^n$。本文的主要结果表明,如果L = L (n) $L=L(n)$增长到无穷,则f $f$的伽罗瓦群是完全对称群,渐近几乎肯定;当n→∞$n\rightarrow \infty$。当L $L$快速增长到无穷大时,设L &gt;n7 $L>n^7$,这个定理是由Gallagher的结果推导出来的。当L $L$有界时,该定理的类比是开放的,而实际情况是伽罗瓦群是大的,因为它包含交替群(如果L &lt;17 $L< 17$,它以扩展黎曼假设为条件)。因此,这个定理最有趣的情况是当L $L$缓慢增长到无穷大时。我们的方法适用于更一般的独立系数。
Full Galois groups of polynomials with slowly growing coefficients
Choose a polynomial uniformly at random from the set of all monic polynomials of degree with integer coefficients in the box . The main result of the paper asserts that if grows to infinity, then the Galois group of is the full symmetric group, asymptotically almost surely, as . When grows rapidly to infinity, say , this theorem follows from a result of Gallagher. When is bounded, the analog of the theorem is open, while the state-of-the-art is that the Galois group is large in the sense that it contains the alternating group (if , it is conditional on the Extended Riemann Hypothesis). Hence the most interesting case of the theorem is when grows slowly to infinity. Our method works for more general independent coefficients.