Berezin-Toeplitz算子的奇异演算

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2025-03-08 DOI:10.1112/mtk.70016
Izak Oltman
{"title":"Berezin-Toeplitz算子的奇异演算","authors":"Izak Oltman","doi":"10.1112/mtk.70016","DOIUrl":null,"url":null,"abstract":"<p>We develop a calculus of Berezin–Toeplitz operators quantizing exotic classes of smooth functions on compact Kähler manifolds and acting on holomorphic sections of powers of positive line bundles. These functions (classical observables) are exotic in the sense that their derivatives are allowed to grow in ways controlled by local geometry and the power of the line bundle. The properties of this quantization are obtained via careful analysis of the kernels of the operators using Melin and Sjöstrand's method of complex stationary phase. We obtain a functional calculus result, a trace formula, and a parametrix construction for this larger class of functions. These results are crucially used in proving a probabilistic Weyl-law for randomly perturbed (standard) Berezin–Toeplitz operators in Oltman (arXiv:2207.09599).</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70016","citationCount":"0","resultStr":"{\"title\":\"An exotic calculus of Berezin–Toeplitz operators\",\"authors\":\"Izak Oltman\",\"doi\":\"10.1112/mtk.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a calculus of Berezin–Toeplitz operators quantizing exotic classes of smooth functions on compact Kähler manifolds and acting on holomorphic sections of powers of positive line bundles. These functions (classical observables) are exotic in the sense that their derivatives are allowed to grow in ways controlled by local geometry and the power of the line bundle. The properties of this quantization are obtained via careful analysis of the kernels of the operators using Melin and Sjöstrand's method of complex stationary phase. We obtain a functional calculus result, a trace formula, and a parametrix construction for this larger class of functions. These results are crucially used in proving a probabilistic Weyl-law for randomly perturbed (standard) Berezin–Toeplitz operators in Oltman (arXiv:2207.09599).</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"71 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70016\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.70016","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们发展了Berezin-Toeplitz算子的演算,该算子将紧致Kähler流形上的奇异类光滑函数量化,并作用于正线束幂的全纯截面。这些函数(经典的可观测值)是奇特的,因为它们的导数允许以局部几何和线束的力量控制的方式增长。利用Melin和Sjöstrand的复定相法对算子核进行了细致的分析,得到了这种量化的性质。我们得到了一个泛函演算结果,一个迹公式,以及这类更大的函数的参数构造。这些结果至关重要地用于证明随机摄动(标准)Berezin-Toeplitz算子在Oltman (arXiv:2207.09599)中的概率weyl律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An exotic calculus of Berezin–Toeplitz operators

An exotic calculus of Berezin–Toeplitz operators

We develop a calculus of Berezin–Toeplitz operators quantizing exotic classes of smooth functions on compact Kähler manifolds and acting on holomorphic sections of powers of positive line bundles. These functions (classical observables) are exotic in the sense that their derivatives are allowed to grow in ways controlled by local geometry and the power of the line bundle. The properties of this quantization are obtained via careful analysis of the kernels of the operators using Melin and Sjöstrand's method of complex stationary phase. We obtain a functional calculus result, a trace formula, and a parametrix construction for this larger class of functions. These results are crucially used in proving a probabilistic Weyl-law for randomly perturbed (standard) Berezin–Toeplitz operators in Oltman (arXiv:2207.09599).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信