新型增强抗击穿强度的三明治结构柔性ANF/PMIA/ANF复合纸

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Guangyu Duan, Fengying Hu, Yinghao Liang, Duo Lu, Wenxuan Shao, Ruopu Xu, Yabing Wang, Zuming Hu
{"title":"新型增强抗击穿强度的三明治结构柔性ANF/PMIA/ANF复合纸","authors":"Guangyu Duan,&nbsp;Fengying Hu,&nbsp;Yinghao Liang,&nbsp;Duo Lu,&nbsp;Wenxuan Shao,&nbsp;Ruopu Xu,&nbsp;Yabing Wang,&nbsp;Zuming Hu","doi":"10.1007/s12221-025-00889-1","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of cutting-edge electrical equipment and electrical systems, it is of great significance to develop advanced polymeric insulating paper with high breakdown strength under a high-temperature environment. In this paper, aramid nanofibers (ANF) and original poly(m-phenylene isophthalamide) (PMIA) paper were utilized to construct ANF/PMIA/ANF composite papers with sandwich structure. On account of the reduced surface roughness of the original PMIA paper, the high breakdown strength of ANF layers and formed high-density electron traps, the breakdown strength of ANF/PMIA/ANF composite paper is significantly enhanced. The Weibull breakdown strength ANF/PMIA/ANF composite paper with 4 mg/mL of ANF are 82.7 MV/m at 25 °C and 61.7 MV/m at 100 °C, which are 165.1 and 137.4% of the A-P-A-0 at 25 and 100 °C, respectively. Additionally, the flame-retardant property of ANF/PMIA/ANF composite paper is also obviously improved with increasing concentration of ANF. Consequently, this work offers an opportunity for the development of novel polymeric insulating paper with enhanced breakdown strength in a wide temperature range.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 3","pages":"1381 - 1391"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12221-025-00889-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel Sandwich-Structured Flexible ANF/PMIA/ANF Composite Paper with Enhanced Breakdown Strength\",\"authors\":\"Guangyu Duan,&nbsp;Fengying Hu,&nbsp;Yinghao Liang,&nbsp;Duo Lu,&nbsp;Wenxuan Shao,&nbsp;Ruopu Xu,&nbsp;Yabing Wang,&nbsp;Zuming Hu\",\"doi\":\"10.1007/s12221-025-00889-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid development of cutting-edge electrical equipment and electrical systems, it is of great significance to develop advanced polymeric insulating paper with high breakdown strength under a high-temperature environment. In this paper, aramid nanofibers (ANF) and original poly(m-phenylene isophthalamide) (PMIA) paper were utilized to construct ANF/PMIA/ANF composite papers with sandwich structure. On account of the reduced surface roughness of the original PMIA paper, the high breakdown strength of ANF layers and formed high-density electron traps, the breakdown strength of ANF/PMIA/ANF composite paper is significantly enhanced. The Weibull breakdown strength ANF/PMIA/ANF composite paper with 4 mg/mL of ANF are 82.7 MV/m at 25 °C and 61.7 MV/m at 100 °C, which are 165.1 and 137.4% of the A-P-A-0 at 25 and 100 °C, respectively. Additionally, the flame-retardant property of ANF/PMIA/ANF composite paper is also obviously improved with increasing concentration of ANF. Consequently, this work offers an opportunity for the development of novel polymeric insulating paper with enhanced breakdown strength in a wide temperature range.</p></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"26 3\",\"pages\":\"1381 - 1391\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12221-025-00889-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-025-00889-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-00889-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

随着尖端电气设备和电气系统的快速发展,开发高温环境下具有高击穿强度的先进聚合物绝缘纸具有重要意义。本文利用芳纶纳米纤维(ANF)和原聚间苯二苯甲酰胺(PMIA)纸,构建了具有夹层结构的ANF/PMIA/ANF复合纸。由于原有PMIA纸的表面粗糙度降低,ANF层的击穿强度高,形成高密度的电子陷阱,ANF/PMIA/ANF复合纸的击穿强度显著提高。添加4 mg/mL ANF的ANF/PMIA/ANF复合纸的威布尔击穿强度在25℃时为82.7 MV/m,在100℃时为61.7 MV/m,分别为25℃和100℃时A-P-A-0的165.1和137.4%。此外,随着ANF浓度的增加,ANF/PMIA/ANF复合纸的阻燃性能也明显提高。因此,这项工作为开发在宽温度范围内具有增强击穿强度的新型聚合物绝缘纸提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Sandwich-Structured Flexible ANF/PMIA/ANF Composite Paper with Enhanced Breakdown Strength

With the rapid development of cutting-edge electrical equipment and electrical systems, it is of great significance to develop advanced polymeric insulating paper with high breakdown strength under a high-temperature environment. In this paper, aramid nanofibers (ANF) and original poly(m-phenylene isophthalamide) (PMIA) paper were utilized to construct ANF/PMIA/ANF composite papers with sandwich structure. On account of the reduced surface roughness of the original PMIA paper, the high breakdown strength of ANF layers and formed high-density electron traps, the breakdown strength of ANF/PMIA/ANF composite paper is significantly enhanced. The Weibull breakdown strength ANF/PMIA/ANF composite paper with 4 mg/mL of ANF are 82.7 MV/m at 25 °C and 61.7 MV/m at 100 °C, which are 165.1 and 137.4% of the A-P-A-0 at 25 and 100 °C, respectively. Additionally, the flame-retardant property of ANF/PMIA/ANF composite paper is also obviously improved with increasing concentration of ANF. Consequently, this work offers an opportunity for the development of novel polymeric insulating paper with enhanced breakdown strength in a wide temperature range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信