利用等离子体效应探索拉斯塔尔理论中的光偏转和黑洞阴影

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Riasat Ali, Xia Tiecheng, Rimsha Babar, Ali Övgün
{"title":"利用等离子体效应探索拉斯塔尔理论中的光偏转和黑洞阴影","authors":"Riasat Ali,&nbsp;Xia Tiecheng,&nbsp;Rimsha Babar,&nbsp;Ali Övgün","doi":"10.1007/s10773-025-05942-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we examine the gravitational deflection of particles in curved spacetime immersed in perfect fluid in the context of Rastall theory. We propose an infinite region approach to Gibbons-Werner to avoid singularity, given that the integral region is generally infinite. In the Rastall theory framework, the black hole solutions in the dust field are studied. Additionally, we check the deflection angle from this spacetime under the influence of plasma. Furthermore, we analytically compute plasma’s impact on a black hole shadow using a ray-tracing approach and Hamiltonian equation. Hence, the light ray motion equations are independent of the plasma’s velocity. It is assumed that plasma is a dispersive medium, pressureless and non-magnetised, and the plasma particle density corresponds to particle accumulation. The supermassive black hole’s shadow and emitted energy are explored when plasma falls radially from infinity onto the black hole.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Light Deflection and Black Hole Shadows in Rastall Theory with Plasma Effects\",\"authors\":\"Riasat Ali,&nbsp;Xia Tiecheng,&nbsp;Rimsha Babar,&nbsp;Ali Övgün\",\"doi\":\"10.1007/s10773-025-05942-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we examine the gravitational deflection of particles in curved spacetime immersed in perfect fluid in the context of Rastall theory. We propose an infinite region approach to Gibbons-Werner to avoid singularity, given that the integral region is generally infinite. In the Rastall theory framework, the black hole solutions in the dust field are studied. Additionally, we check the deflection angle from this spacetime under the influence of plasma. Furthermore, we analytically compute plasma’s impact on a black hole shadow using a ray-tracing approach and Hamiltonian equation. Hence, the light ray motion equations are independent of the plasma’s velocity. It is assumed that plasma is a dispersive medium, pressureless and non-magnetised, and the plasma particle density corresponds to particle accumulation. The supermassive black hole’s shadow and emitted energy are explored when plasma falls radially from infinity onto the black hole.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-05942-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05942-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在拉斯托理论的背景下研究了浸没在完美流体中的弯曲时空中的粒子的引力偏转。针对积分区域一般为无穷大的情况,提出了一种避免奇异性的无限区域方法。在Rastall理论框架下,研究了尘埃场中的黑洞解。此外,我们还检查了等离子体影响下的时空偏转角。此外,我们利用射线追踪方法和哈密顿方程分析计算了等离子体对黑洞阴影的影响。因此,光线运动方程与等离子体的速度无关。假设等离子体是一种色散介质,无压无磁化,等离子体粒子密度对应于粒子聚集。当等离子体从无穷远处径向落向黑洞时,超大质量黑洞的阴影和发射的能量被探测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Light Deflection and Black Hole Shadows in Rastall Theory with Plasma Effects

In this article, we examine the gravitational deflection of particles in curved spacetime immersed in perfect fluid in the context of Rastall theory. We propose an infinite region approach to Gibbons-Werner to avoid singularity, given that the integral region is generally infinite. In the Rastall theory framework, the black hole solutions in the dust field are studied. Additionally, we check the deflection angle from this spacetime under the influence of plasma. Furthermore, we analytically compute plasma’s impact on a black hole shadow using a ray-tracing approach and Hamiltonian equation. Hence, the light ray motion equations are independent of the plasma’s velocity. It is assumed that plasma is a dispersive medium, pressureless and non-magnetised, and the plasma particle density corresponds to particle accumulation. The supermassive black hole’s shadow and emitted energy are explored when plasma falls radially from infinity onto the black hole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信