聚(苯甲醛-co-噻吩)和聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混物的表征:结构、热学和形态性质

IF 1.1 4区 化学 Q4 POLYMER SCIENCE
Hinane Baleh, Abdelkader Dehbi, Salah Bassaid, Lamia Kabir, Ali Alsalme, Giovanna Colucci, Massimo Messori
{"title":"聚(苯甲醛-co-噻吩)和聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混物的表征:结构、热学和形态性质","authors":"Hinane Baleh,&nbsp;Abdelkader Dehbi,&nbsp;Salah Bassaid,&nbsp;Lamia Kabir,&nbsp;Ali Alsalme,&nbsp;Giovanna Colucci,&nbsp;Massimo Messori","doi":"10.1134/S0965545X25600012","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the properties of a blend made from two copolymers: poly(benzaldehyde-<i>co</i>-thiophene) (PBT) and poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyvalerate) (PHBV). PBT was first synthesized via oxidative coupling of thiophene and benzaldehyde monomers. The synthesized PBT was then mixed with commercially available PHBV in a 50/50 ratio using solution casting. The X-ray diffraction revealed the amorphous nature of PBT and the semi-crystalline nature of PHBV. The Infrared spectroscopy confirmed the presence of both materials in the blend. UV–Vis analysis showed characteristic absorption peaks for both polymers: PBT displayed π–π* transitions and a π–π* transition related to its semiconducting properties, while PHBV exhibited peaks associated with the carbonyl group. The thermogravimetric analysis demonstrated the thermal stability of PBT compared to the degradability of PHBV. The differential scanning calorimetry revealed a decrease in the blend’s melting temperature and enthalpy of fusion compared to pure PHBV, indicating hindered crystallization in the blend. The scanning electron microscopy visualized the distinct morphologies of the two copolymers within the blend, suggesting their immiscibility.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"66 4","pages":"543 - 550"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Poly(benzaldehyde-co-thiophene) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blend: Structural, Thermal, and Morphological Properties\",\"authors\":\"Hinane Baleh,&nbsp;Abdelkader Dehbi,&nbsp;Salah Bassaid,&nbsp;Lamia Kabir,&nbsp;Ali Alsalme,&nbsp;Giovanna Colucci,&nbsp;Massimo Messori\",\"doi\":\"10.1134/S0965545X25600012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigated the properties of a blend made from two copolymers: poly(benzaldehyde-<i>co</i>-thiophene) (PBT) and poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyvalerate) (PHBV). PBT was first synthesized via oxidative coupling of thiophene and benzaldehyde monomers. The synthesized PBT was then mixed with commercially available PHBV in a 50/50 ratio using solution casting. The X-ray diffraction revealed the amorphous nature of PBT and the semi-crystalline nature of PHBV. The Infrared spectroscopy confirmed the presence of both materials in the blend. UV–Vis analysis showed characteristic absorption peaks for both polymers: PBT displayed π–π* transitions and a π–π* transition related to its semiconducting properties, while PHBV exhibited peaks associated with the carbonyl group. The thermogravimetric analysis demonstrated the thermal stability of PBT compared to the degradability of PHBV. The differential scanning calorimetry revealed a decrease in the blend’s melting temperature and enthalpy of fusion compared to pure PHBV, indicating hindered crystallization in the blend. The scanning electron microscopy visualized the distinct morphologies of the two copolymers within the blend, suggesting their immiscibility.</p>\",\"PeriodicalId\":738,\"journal\":{\"name\":\"Polymer Science, Series A\",\"volume\":\"66 4\",\"pages\":\"543 - 550\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965545X25600012\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X25600012","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了聚苯甲醛-co-噻吩(PBT)和聚3-羟基丁酸-co-3-羟基戊酸酯(PHBV)两种共聚物共混物的性能。采用噻吩与苯甲醛单体氧化偶联的方法首次合成了PBT。然后将合成的PBT与市售PHBV以50/50的比例混合,采用溶液铸造。x射线衍射显示PBT的非晶性质和PHBV的半晶性质。红外光谱证实了混合物中两种物质的存在。紫外可见光谱分析显示了两种聚合物的特征吸收峰:PBT显示与其半导体性质相关的π -π *跃迁和π -π *跃迁,而PHBV显示与羰基相关的峰。热重分析表明PBT的热稳定性优于PHBV的可降解性。差示扫描量热法显示,与纯PHBV相比,共混物的熔融温度和熔合焓降低,表明共混物结晶受阻。扫描电镜显示了共混物中两种共聚物的不同形态,表明它们的不混溶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterization of Poly(benzaldehyde-co-thiophene) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blend: Structural, Thermal, and Morphological Properties

Characterization of Poly(benzaldehyde-co-thiophene) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blend: Structural, Thermal, and Morphological Properties

This study investigated the properties of a blend made from two copolymers: poly(benzaldehyde-co-thiophene) (PBT) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). PBT was first synthesized via oxidative coupling of thiophene and benzaldehyde monomers. The synthesized PBT was then mixed with commercially available PHBV in a 50/50 ratio using solution casting. The X-ray diffraction revealed the amorphous nature of PBT and the semi-crystalline nature of PHBV. The Infrared spectroscopy confirmed the presence of both materials in the blend. UV–Vis analysis showed characteristic absorption peaks for both polymers: PBT displayed π–π* transitions and a π–π* transition related to its semiconducting properties, while PHBV exhibited peaks associated with the carbonyl group. The thermogravimetric analysis demonstrated the thermal stability of PBT compared to the degradability of PHBV. The differential scanning calorimetry revealed a decrease in the blend’s melting temperature and enthalpy of fusion compared to pure PHBV, indicating hindered crystallization in the blend. The scanning electron microscopy visualized the distinct morphologies of the two copolymers within the blend, suggesting their immiscibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Science, Series A
Polymer Science, Series A 化学-高分子科学
CiteScore
1.70
自引率
0.00%
发文量
55
审稿时长
3 months
期刊介绍: Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信