现实与错觉之间:将大型语言模型应用于陪伴机器人与老年人进行开放域对话的挑战

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bahar Irfan, Sanna Kuoppamäki, Aida Hosseini, Gabriel Skantze
{"title":"现实与错觉之间:将大型语言模型应用于陪伴机器人与老年人进行开放域对话的挑战","authors":"Bahar Irfan,&nbsp;Sanna Kuoppamäki,&nbsp;Aida Hosseini,&nbsp;Gabriel Skantze","doi":"10.1007/s10514-025-10190-y","DOIUrl":null,"url":null,"abstract":"<div><p>Throughout our lives, we interact daily in conversations with our friends and family, covering a wide range of topics, known as open-domain dialogue. As we age, these interactions may diminish due to changes in social and personal relationships, leading to loneliness in older adults. Conversational companion robots can alleviate this issue by providing daily social support. Large language models (LLMs) offer flexibility for enabling open-domain dialogue in these robots. However, LLMs are typically trained and evaluated on textual data, while robots introduce additional complexity through multi-modal interactions, which has not been explored in prior studies. Moreover, it is crucial to involve older adults in the development of robots to ensure alignment with their needs and expectations. Correspondingly, using iterative participatory design approaches, this paper exposes the challenges of integrating LLMs into conversational robots, deriving from 34 Swedish-speaking older adults’ (one-to-one) interactions with a personalized companion robot, built on Furhat robot with GPT<span>\\(-\\)</span>3.5. These challenges encompass disruptions in conversations, including frequent interruptions, slow, repetitive, superficial, incoherent, and disengaging responses, language barriers, hallucinations, and outdated information, leading to frustration, confusion, and worry among older adults. Drawing on insights from these challenges, we offer recommendations to enhance the integration of LLMs into conversational robots, encompassing both general suggestions and those tailored to companion robots for older adults.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"49 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-025-10190-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Between reality and delusion: challenges of applying large language models to companion robots for open-domain dialogues with older adults\",\"authors\":\"Bahar Irfan,&nbsp;Sanna Kuoppamäki,&nbsp;Aida Hosseini,&nbsp;Gabriel Skantze\",\"doi\":\"10.1007/s10514-025-10190-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Throughout our lives, we interact daily in conversations with our friends and family, covering a wide range of topics, known as open-domain dialogue. As we age, these interactions may diminish due to changes in social and personal relationships, leading to loneliness in older adults. Conversational companion robots can alleviate this issue by providing daily social support. Large language models (LLMs) offer flexibility for enabling open-domain dialogue in these robots. However, LLMs are typically trained and evaluated on textual data, while robots introduce additional complexity through multi-modal interactions, which has not been explored in prior studies. Moreover, it is crucial to involve older adults in the development of robots to ensure alignment with their needs and expectations. Correspondingly, using iterative participatory design approaches, this paper exposes the challenges of integrating LLMs into conversational robots, deriving from 34 Swedish-speaking older adults’ (one-to-one) interactions with a personalized companion robot, built on Furhat robot with GPT<span>\\\\(-\\\\)</span>3.5. These challenges encompass disruptions in conversations, including frequent interruptions, slow, repetitive, superficial, incoherent, and disengaging responses, language barriers, hallucinations, and outdated information, leading to frustration, confusion, and worry among older adults. Drawing on insights from these challenges, we offer recommendations to enhance the integration of LLMs into conversational robots, encompassing both general suggestions and those tailored to companion robots for older adults.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-025-10190-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-025-10190-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-025-10190-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在我们的生活中,我们每天都与朋友和家人进行对话,涉及广泛的主题,称为开放域对话。随着年龄的增长,由于社会和个人关系的变化,这些互动可能会减少,导致老年人感到孤独。会话伴侣机器人可以通过提供日常社会支持来缓解这个问题。大型语言模型(llm)为在这些机器人中启用开放域对话提供了灵活性。然而,法学硕士通常是在文本数据上进行训练和评估的,而机器人通过多模态交互引入了额外的复杂性,这在以前的研究中没有被探索过。此外,让老年人参与机器人的开发,以确保符合他们的需求和期望,这一点至关重要。相应地,使用迭代参与式设计方法,本文揭示了将llm集成到会话机器人中的挑战,该研究来自34名讲瑞典语的老年人与基于GPT \(-\) 3.5的Furhat机器人的个性化伴侣机器人(一对一)交互。这些挑战包括对话中断,包括频繁的中断,缓慢,重复,肤浅,不连贯和脱离的反应,语言障碍,幻觉和过时的信息,导致老年人的沮丧,困惑和担忧。根据这些挑战的见解,我们提出了一些建议,以加强llm与对话机器人的整合,包括一般建议和为老年人量身定制的陪伴机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Between reality and delusion: challenges of applying large language models to companion robots for open-domain dialogues with older adults

Throughout our lives, we interact daily in conversations with our friends and family, covering a wide range of topics, known as open-domain dialogue. As we age, these interactions may diminish due to changes in social and personal relationships, leading to loneliness in older adults. Conversational companion robots can alleviate this issue by providing daily social support. Large language models (LLMs) offer flexibility for enabling open-domain dialogue in these robots. However, LLMs are typically trained and evaluated on textual data, while robots introduce additional complexity through multi-modal interactions, which has not been explored in prior studies. Moreover, it is crucial to involve older adults in the development of robots to ensure alignment with their needs and expectations. Correspondingly, using iterative participatory design approaches, this paper exposes the challenges of integrating LLMs into conversational robots, deriving from 34 Swedish-speaking older adults’ (one-to-one) interactions with a personalized companion robot, built on Furhat robot with GPT\(-\)3.5. These challenges encompass disruptions in conversations, including frequent interruptions, slow, repetitive, superficial, incoherent, and disengaging responses, language barriers, hallucinations, and outdated information, leading to frustration, confusion, and worry among older adults. Drawing on insights from these challenges, we offer recommendations to enhance the integration of LLMs into conversational robots, encompassing both general suggestions and those tailored to companion robots for older adults.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信