优先取向纤维网状材料的强度和刚度

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
S.N. Amjad, R.C. Picu
{"title":"优先取向纤维网状材料的强度和刚度","authors":"S.N. Amjad,&nbsp;R.C. Picu","doi":"10.1016/j.jmps.2025.106101","DOIUrl":null,"url":null,"abstract":"<div><div>Materials made from fibers, referred to here as Network materials, are ubiquitous in biology and engineering. In most practical situations, fibers have preferential orientation in one spatial direction or in a plane. Here we use discrete network models to derive the relationship between the stiffness and strength of networks with pre-aligned fibers and network parameters, including the degree of alignment. Both stiffness and strength can be represented by the product of two functions, one accounting for the effect of alignment and the other representing the effect of network parameters, such as the network density and fiber properties. Failure under multiaxial loading is also considered and it is concluded that failure surfaces in stress space can be collapsed by normalizing the axes with the respective (pre-alignment-dependent) uniaxial strength. This generalizes the structure-properties relation established based on uniaxial tests to the multiaxial case. The inferred scaling laws are compared with a collection of experimental data from the literature obtained with diverse network materials.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"200 ","pages":"Article 106101"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength and stiffness of network materials with preferentially oriented fibers\",\"authors\":\"S.N. Amjad,&nbsp;R.C. Picu\",\"doi\":\"10.1016/j.jmps.2025.106101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Materials made from fibers, referred to here as Network materials, are ubiquitous in biology and engineering. In most practical situations, fibers have preferential orientation in one spatial direction or in a plane. Here we use discrete network models to derive the relationship between the stiffness and strength of networks with pre-aligned fibers and network parameters, including the degree of alignment. Both stiffness and strength can be represented by the product of two functions, one accounting for the effect of alignment and the other representing the effect of network parameters, such as the network density and fiber properties. Failure under multiaxial loading is also considered and it is concluded that failure surfaces in stress space can be collapsed by normalizing the axes with the respective (pre-alignment-dependent) uniaxial strength. This generalizes the structure-properties relation established based on uniaxial tests to the multiaxial case. The inferred scaling laws are compared with a collection of experimental data from the literature obtained with diverse network materials.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"200 \",\"pages\":\"Article 106101\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509625000778\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625000778","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由纤维制成的材料,在这里被称为网络材料,在生物和工程中无处不在。在大多数实际情况下,纤维在一个空间方向或在一个平面上具有优先取向。在这里,我们使用离散网络模型来推导具有预对准纤维的网络的刚度和强度与网络参数(包括对准程度)之间的关系。刚度和强度都可以用两个函数的乘积来表示,一个函数代表对准的影响,另一个函数代表网络参数的影响,如网络密度和纤维性能。还考虑了多轴载荷下的破坏,并得出结论,应力空间中的破坏面可以通过用各自的(预对准依赖的)单轴强度归一化轴来崩溃。这将基于单轴试验建立的结构-性能关系推广到多轴情况。推导出的标度定律与不同网络材料的文献实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strength and stiffness of network materials with preferentially oriented fibers
Materials made from fibers, referred to here as Network materials, are ubiquitous in biology and engineering. In most practical situations, fibers have preferential orientation in one spatial direction or in a plane. Here we use discrete network models to derive the relationship between the stiffness and strength of networks with pre-aligned fibers and network parameters, including the degree of alignment. Both stiffness and strength can be represented by the product of two functions, one accounting for the effect of alignment and the other representing the effect of network parameters, such as the network density and fiber properties. Failure under multiaxial loading is also considered and it is concluded that failure surfaces in stress space can be collapsed by normalizing the axes with the respective (pre-alignment-dependent) uniaxial strength. This generalizes the structure-properties relation established based on uniaxial tests to the multiaxial case. The inferred scaling laws are compared with a collection of experimental data from the literature obtained with diverse network materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信