Sabira Seipetdenova , Toheeb O. Oladejo , Aliya Bekmurzayeva , Christabel K.L. Tan , Minghong Yang , Wilfried Blanc , Daniele Tosi
{"title":"使用光纤生物传感器进行糖尿病视网膜病变生物标志物的无标签多路检测:走向实验室","authors":"Sabira Seipetdenova , Toheeb O. Oladejo , Aliya Bekmurzayeva , Christabel K.L. Tan , Minghong Yang , Wilfried Blanc , Daniele Tosi","doi":"10.1016/j.optlaseng.2025.108943","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic retinopathy is a common disease in diabetic patients accompanied by such complications as edema, formation of hard exudates, hemorrhages, and eventually vision loss. Detection of the disease at an early stage could increase the effectiveness of therapy and preserve the patient's vision. Measuring the levels of diabetic retinopathy-associated biomarkers using more reliable methods is an alternative and promising way of diagnosis. Optical fiber biosensors have gained rising popularity in providing affordable platforms due to their high-performance capabilities, miniature size, and label-free nature of detection. These properties made them a sensor of choice for developing biosensors for a multiplexed <em>in situ</em> detection of biomarkers in this study. Here, we report an optical fiber-based biosensor that is based on simply fabricated semi-distributed interferometry sensors. After fabrication, sensitive sensors were chosen for further functionalization with two antibodies against biomarkers relevant to diabetic retinopathy to produce biosensors. The detection of the biomarkers was evaluated in artificial tear fluid in static conditions and most importantly in dynamic conditions simulating natural tear flow. This method allowed label-free monitoring of the intensity change with the increasing concentrations of analytes specifically binding on the biosensor surface. Namely, it was possible to detect lipocalin 1 protein with a limit of detection of 5.98 ng/mL and vascular endothelial growth factor down to 26.6 fg/mL. The designed biosensors can become the basis for developing a new method for a clinical diagnosis of eye diseases at early stages of development.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"189 ","pages":"Article 108943"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-free multiplexed detection of diabetic retinopathy biomarkers using fiber optic biosensors: Towards lab-in-the-tear\",\"authors\":\"Sabira Seipetdenova , Toheeb O. Oladejo , Aliya Bekmurzayeva , Christabel K.L. Tan , Minghong Yang , Wilfried Blanc , Daniele Tosi\",\"doi\":\"10.1016/j.optlaseng.2025.108943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetic retinopathy is a common disease in diabetic patients accompanied by such complications as edema, formation of hard exudates, hemorrhages, and eventually vision loss. Detection of the disease at an early stage could increase the effectiveness of therapy and preserve the patient's vision. Measuring the levels of diabetic retinopathy-associated biomarkers using more reliable methods is an alternative and promising way of diagnosis. Optical fiber biosensors have gained rising popularity in providing affordable platforms due to their high-performance capabilities, miniature size, and label-free nature of detection. These properties made them a sensor of choice for developing biosensors for a multiplexed <em>in situ</em> detection of biomarkers in this study. Here, we report an optical fiber-based biosensor that is based on simply fabricated semi-distributed interferometry sensors. After fabrication, sensitive sensors were chosen for further functionalization with two antibodies against biomarkers relevant to diabetic retinopathy to produce biosensors. The detection of the biomarkers was evaluated in artificial tear fluid in static conditions and most importantly in dynamic conditions simulating natural tear flow. This method allowed label-free monitoring of the intensity change with the increasing concentrations of analytes specifically binding on the biosensor surface. Namely, it was possible to detect lipocalin 1 protein with a limit of detection of 5.98 ng/mL and vascular endothelial growth factor down to 26.6 fg/mL. The designed biosensors can become the basis for developing a new method for a clinical diagnosis of eye diseases at early stages of development.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":\"189 \",\"pages\":\"Article 108943\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816625001307\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816625001307","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Label-free multiplexed detection of diabetic retinopathy biomarkers using fiber optic biosensors: Towards lab-in-the-tear
Diabetic retinopathy is a common disease in diabetic patients accompanied by such complications as edema, formation of hard exudates, hemorrhages, and eventually vision loss. Detection of the disease at an early stage could increase the effectiveness of therapy and preserve the patient's vision. Measuring the levels of diabetic retinopathy-associated biomarkers using more reliable methods is an alternative and promising way of diagnosis. Optical fiber biosensors have gained rising popularity in providing affordable platforms due to their high-performance capabilities, miniature size, and label-free nature of detection. These properties made them a sensor of choice for developing biosensors for a multiplexed in situ detection of biomarkers in this study. Here, we report an optical fiber-based biosensor that is based on simply fabricated semi-distributed interferometry sensors. After fabrication, sensitive sensors were chosen for further functionalization with two antibodies against biomarkers relevant to diabetic retinopathy to produce biosensors. The detection of the biomarkers was evaluated in artificial tear fluid in static conditions and most importantly in dynamic conditions simulating natural tear flow. This method allowed label-free monitoring of the intensity change with the increasing concentrations of analytes specifically binding on the biosensor surface. Namely, it was possible to detect lipocalin 1 protein with a limit of detection of 5.98 ng/mL and vascular endothelial growth factor down to 26.6 fg/mL. The designed biosensors can become the basis for developing a new method for a clinical diagnosis of eye diseases at early stages of development.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques