Yelin Wang , Feiyang Xia , Linlin Yao , Shunyu Zhao , Youjie Li , Yanpeng Cai
{"title":"人类活动下城市空气质量预测的增强机器学习模型","authors":"Yelin Wang , Feiyang Xia , Linlin Yao , Shunyu Zhao , Youjie Li , Yanpeng Cai","doi":"10.1016/j.uclim.2025.102359","DOIUrl":null,"url":null,"abstract":"<div><div>With industrialization and urbanization, intense human activities are intensifying the complexity and dynamics of air quality variations, presenting significant challenges to prediction efforts. In this research, an enhanced machine learning model was proposed for forecasting urban air quality, based on integrating data de-noising, an optimized decomposition method, and error adaptive reduction into a hybrid framework. The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Threshold (CEEMDANT) was developed by introducing statistical methods into the decomposition process, which enhanced the capability of extracting abrupt variations. At the same time, an error adaptive reduction strategy was designed to enhance the model's robustness and minimize forecasting risks. The model was demonstrated through a real-world case study of air quality prediction in four megacities of China, including Beijing, Shanghai, Guangzhou, and Shenzhen. The results indicated that CEEMDANT decreased the loss ratio of valid information by 16.01 %. Compared to traditional hybrid models, the error adaptive reduction strategy improved forecasting accuracy and stability by 9.96 % and 3.41 %, respectively. The proposed model provided precise benchmarks for residents to avoid health risks.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"60 ","pages":"Article 102359"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced machine learning model for urban air quality forecasting under intense human activities\",\"authors\":\"Yelin Wang , Feiyang Xia , Linlin Yao , Shunyu Zhao , Youjie Li , Yanpeng Cai\",\"doi\":\"10.1016/j.uclim.2025.102359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With industrialization and urbanization, intense human activities are intensifying the complexity and dynamics of air quality variations, presenting significant challenges to prediction efforts. In this research, an enhanced machine learning model was proposed for forecasting urban air quality, based on integrating data de-noising, an optimized decomposition method, and error adaptive reduction into a hybrid framework. The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Threshold (CEEMDANT) was developed by introducing statistical methods into the decomposition process, which enhanced the capability of extracting abrupt variations. At the same time, an error adaptive reduction strategy was designed to enhance the model's robustness and minimize forecasting risks. The model was demonstrated through a real-world case study of air quality prediction in four megacities of China, including Beijing, Shanghai, Guangzhou, and Shenzhen. The results indicated that CEEMDANT decreased the loss ratio of valid information by 16.01 %. Compared to traditional hybrid models, the error adaptive reduction strategy improved forecasting accuracy and stability by 9.96 % and 3.41 %, respectively. The proposed model provided precise benchmarks for residents to avoid health risks.</div></div>\",\"PeriodicalId\":48626,\"journal\":{\"name\":\"Urban Climate\",\"volume\":\"60 \",\"pages\":\"Article 102359\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Climate\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212095525000756\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095525000756","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An enhanced machine learning model for urban air quality forecasting under intense human activities
With industrialization and urbanization, intense human activities are intensifying the complexity and dynamics of air quality variations, presenting significant challenges to prediction efforts. In this research, an enhanced machine learning model was proposed for forecasting urban air quality, based on integrating data de-noising, an optimized decomposition method, and error adaptive reduction into a hybrid framework. The Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Threshold (CEEMDANT) was developed by introducing statistical methods into the decomposition process, which enhanced the capability of extracting abrupt variations. At the same time, an error adaptive reduction strategy was designed to enhance the model's robustness and minimize forecasting risks. The model was demonstrated through a real-world case study of air quality prediction in four megacities of China, including Beijing, Shanghai, Guangzhou, and Shenzhen. The results indicated that CEEMDANT decreased the loss ratio of valid information by 16.01 %. Compared to traditional hybrid models, the error adaptive reduction strategy improved forecasting accuracy and stability by 9.96 % and 3.41 %, respectively. The proposed model provided precise benchmarks for residents to avoid health risks.
期刊介绍:
Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following:
Urban meteorology and climate[...]
Urban environmental pollution[...]
Adaptation to global change[...]
Urban economic and social issues[...]
Research Approaches[...]