高速气体动态流动的红外热成像研究

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Irina Znamenskaya, Murat Muratov, Daria Dolbnya
{"title":"高速气体动态流动的红外热成像研究","authors":"Irina Znamenskaya,&nbsp;Murat Muratov,&nbsp;Daria Dolbnya","doi":"10.1016/j.ijthermalsci.2025.109827","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the application of a specific infrared thermography technique to visualize high-speed flows by analyzing the emerging thermal distribution on quartz windows of a shock tube channel’s sidewalls (<span><math><mrow><mn>24</mn><mo>×</mo><mn>48</mn><mspace></mspace><mi>m</mi><mi>m</mi></mrow></math></span>). The interaction between non-stationary flow (<span><math><mrow><mi>M</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>−</mo><mn>4</mn><mo>.</mo><mn>0</mn></mrow></math></span>) and the streamlined channel walls results in energy exchange at the interface, forming a corresponding thermal load distribution due to the heat tangential conduction. These integral heat flux traces were captured using an infrared camera and quantitatively investigated. Panoramic infrared imaging conducted by a thermal camera with operating range <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mo>−</mo><mn>5</mn><mo>.</mo><mn>1</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> and an exposure time of up to <span><math><mrow><mn>500</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span> was combined and compared with a frame-by-frame shadowgraphy. The resulting radiation intensity integral maps were analyzed as a function of the incident shock wave Mach number, local flow-quartz interaction duration and heat flux magnitude, influenced by non-stationary boundary layer behavior. It is shown that the acquired inhomogeneous integral thermal patterns on the channel inner surfaces accurately correspond to the gas-dynamic structures of the flow according to their duration and intensity. The analysis underscores key local flow characteristics, including regions of deceleration and compression, stagnation zones, and rarefaction areas. Thermal maps captured from different observation angles (<span><math><mrow><mi>Θ</mi><mo>≈</mo><mn>0</mn><mo>°</mo><mo>,</mo><mn>25</mn><mo>°</mo><mo>,</mo><mn>36</mn><mo>°</mo></mrow></math></span>) revealed sidewall-specific heating patterns and composite images of overall radiation intensity. Experimental findings underline the feasibility of using this approach to investigate spatial–temporal characteristics of non-stationary flows via evolving thermal distributions on streamlined surfaces under conditions of non-stationary heat and mass transfer.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109827"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IR-thermography studies of high-speed gas-dynamic flows\",\"authors\":\"Irina Znamenskaya,&nbsp;Murat Muratov,&nbsp;Daria Dolbnya\",\"doi\":\"10.1016/j.ijthermalsci.2025.109827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the application of a specific infrared thermography technique to visualize high-speed flows by analyzing the emerging thermal distribution on quartz windows of a shock tube channel’s sidewalls (<span><math><mrow><mn>24</mn><mo>×</mo><mn>48</mn><mspace></mspace><mi>m</mi><mi>m</mi></mrow></math></span>). The interaction between non-stationary flow (<span><math><mrow><mi>M</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>8</mn><mo>−</mo><mn>4</mn><mo>.</mo><mn>0</mn></mrow></math></span>) and the streamlined channel walls results in energy exchange at the interface, forming a corresponding thermal load distribution due to the heat tangential conduction. These integral heat flux traces were captured using an infrared camera and quantitatively investigated. Panoramic infrared imaging conducted by a thermal camera with operating range <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mo>−</mo><mn>5</mn><mo>.</mo><mn>1</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> and an exposure time of up to <span><math><mrow><mn>500</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span> was combined and compared with a frame-by-frame shadowgraphy. The resulting radiation intensity integral maps were analyzed as a function of the incident shock wave Mach number, local flow-quartz interaction duration and heat flux magnitude, influenced by non-stationary boundary layer behavior. It is shown that the acquired inhomogeneous integral thermal patterns on the channel inner surfaces accurately correspond to the gas-dynamic structures of the flow according to their duration and intensity. The analysis underscores key local flow characteristics, including regions of deceleration and compression, stagnation zones, and rarefaction areas. Thermal maps captured from different observation angles (<span><math><mrow><mi>Θ</mi><mo>≈</mo><mn>0</mn><mo>°</mo><mo>,</mo><mn>25</mn><mo>°</mo><mo>,</mo><mn>36</mn><mo>°</mo></mrow></math></span>) revealed sidewall-specific heating patterns and composite images of overall radiation intensity. Experimental findings underline the feasibility of using this approach to investigate spatial–temporal characteristics of non-stationary flows via evolving thermal distributions on streamlined surfaces under conditions of non-stationary heat and mass transfer.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"214 \",\"pages\":\"Article 109827\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925001504\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925001504","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过分析激波管通道侧壁石英窗上出现的热分布,研究了一种特殊的红外热成像技术的应用,以显示高速流动(24×48mm)。非定常流动(M=1.8 ~ 4.0)与流线型通道壁面的相互作用导致界面处能量交换,形成相应的切向热传导热负荷分布。这些积分热通量迹线是用红外相机捕获并定量研究的。采用工作范围为1.5 ~ 5.1μm、曝光时间为500μs的热像仪进行全景红外成像,并与逐帧阴影成像进行对比。得到的辐射强度积分图作为入射激波马赫数、局部流-石英相互作用持续时间和热通量大小的函数进行了分析,并受非平稳边界层行为的影响。结果表明,所获得的通道内表面的非均匀积分热模式根据其持续时间和强度准确地对应了流动的气动力结构。分析强调了关键的局部流动特征,包括减速和压缩区域、停滞区域和稀薄区域。从不同观测角度(Θ≈0°,25°,36°)捕获的热图显示了侧壁特定的加热模式和总体辐射强度的合成图像。实验结果表明,在非稳态传热传质条件下,利用该方法通过流线型表面的热分布变化来研究非稳态流动的时空特征是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IR-thermography studies of high-speed gas-dynamic flows
This study investigates the application of a specific infrared thermography technique to visualize high-speed flows by analyzing the emerging thermal distribution on quartz windows of a shock tube channel’s sidewalls (24×48mm). The interaction between non-stationary flow (M=1.84.0) and the streamlined channel walls results in energy exchange at the interface, forming a corresponding thermal load distribution due to the heat tangential conduction. These integral heat flux traces were captured using an infrared camera and quantitatively investigated. Panoramic infrared imaging conducted by a thermal camera with operating range 1.55.1μm and an exposure time of up to 500μs was combined and compared with a frame-by-frame shadowgraphy. The resulting radiation intensity integral maps were analyzed as a function of the incident shock wave Mach number, local flow-quartz interaction duration and heat flux magnitude, influenced by non-stationary boundary layer behavior. It is shown that the acquired inhomogeneous integral thermal patterns on the channel inner surfaces accurately correspond to the gas-dynamic structures of the flow according to their duration and intensity. The analysis underscores key local flow characteristics, including regions of deceleration and compression, stagnation zones, and rarefaction areas. Thermal maps captured from different observation angles (Θ0°,25°,36°) revealed sidewall-specific heating patterns and composite images of overall radiation intensity. Experimental findings underline the feasibility of using this approach to investigate spatial–temporal characteristics of non-stationary flows via evolving thermal distributions on streamlined surfaces under conditions of non-stationary heat and mass transfer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信