Pengfei Zhao , Guanghui Huang , Xufeng Wang , Zhen Zhang , Guojiang Wang , Ziyan Huang , Youjing Fu
{"title":"通过引入漫射分数和辐射标量改进光利用效率模型","authors":"Pengfei Zhao , Guanghui Huang , Xufeng Wang , Zhen Zhang , Guojiang Wang , Ziyan Huang , Youjing Fu","doi":"10.1016/j.scitotenv.2025.179065","DOIUrl":null,"url":null,"abstract":"<div><div>Surface solar radiation, both its components and intensity, is pivotal in determining vegetation light use efficiency (LUE) and is essential for accurately estimating gross primary production (GPP) in ecosystems. This study introduces two key parameters: the diffuse photosynthetic photon flux density fraction (f<sub>dPPFD</sub>) to account for the diffuse fertilization effect (DFE) and the radiation scalar to reflect the impact of radiation intensity on leaf-level LUE. Leveraging these parameters, we developed two novel LUE models: the Big-leaf Diffuse-fraction Radiation-scalar LUE (BDR-LUE) model, adapted from traditional big-leaf LUE models, and the Two-leaf Diffuse-fraction Radiation-scalar LUE (TDR-LUE) model, based on conventional two-leaf LUE frameworks. These models were calibrated and validated using data from 32 FLUXNET sites representing six vegetation types with available diffuse PPFD measurements. The results reveal the following key findings: (1) Both new models, particularly the TDR-LUE model, deliver superior performance compared to conventional big-leaf and two-leaf LUE models; (2) The BDR-LUE model reduces the root mean square error (RMSE) by at least 12.75 % compared to the conventional Eddy Covariance-LUE (EC-LUE) model; (3) The TDR-LUE model achieves an RMSE reduction of at least 13.54 % compared to the established Two-Leaf LUE (TL-LUE) model; (4) Both models effectively capture annual and monthly variations in vegetation GPP; (5) While the BDR-LUE model outperforms the TDR-LUE model for croplands, it shows lower accuracy for other vegetation types. These findings underscore the importance of integrating fdPPFD and the radiation scalar into LUE models. The proposed models demonstrate substantial potential for enhancing GPP estimates in terrestrial ecosystems.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"971 ","pages":"Article 179065"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving light use efficiency models via the introduction of both the diffuse fraction and radiation scalar\",\"authors\":\"Pengfei Zhao , Guanghui Huang , Xufeng Wang , Zhen Zhang , Guojiang Wang , Ziyan Huang , Youjing Fu\",\"doi\":\"10.1016/j.scitotenv.2025.179065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surface solar radiation, both its components and intensity, is pivotal in determining vegetation light use efficiency (LUE) and is essential for accurately estimating gross primary production (GPP) in ecosystems. This study introduces two key parameters: the diffuse photosynthetic photon flux density fraction (f<sub>dPPFD</sub>) to account for the diffuse fertilization effect (DFE) and the radiation scalar to reflect the impact of radiation intensity on leaf-level LUE. Leveraging these parameters, we developed two novel LUE models: the Big-leaf Diffuse-fraction Radiation-scalar LUE (BDR-LUE) model, adapted from traditional big-leaf LUE models, and the Two-leaf Diffuse-fraction Radiation-scalar LUE (TDR-LUE) model, based on conventional two-leaf LUE frameworks. These models were calibrated and validated using data from 32 FLUXNET sites representing six vegetation types with available diffuse PPFD measurements. The results reveal the following key findings: (1) Both new models, particularly the TDR-LUE model, deliver superior performance compared to conventional big-leaf and two-leaf LUE models; (2) The BDR-LUE model reduces the root mean square error (RMSE) by at least 12.75 % compared to the conventional Eddy Covariance-LUE (EC-LUE) model; (3) The TDR-LUE model achieves an RMSE reduction of at least 13.54 % compared to the established Two-Leaf LUE (TL-LUE) model; (4) Both models effectively capture annual and monthly variations in vegetation GPP; (5) While the BDR-LUE model outperforms the TDR-LUE model for croplands, it shows lower accuracy for other vegetation types. These findings underscore the importance of integrating fdPPFD and the radiation scalar into LUE models. The proposed models demonstrate substantial potential for enhancing GPP estimates in terrestrial ecosystems.</div></div>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"971 \",\"pages\":\"Article 179065\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048969725007004\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725007004","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Improving light use efficiency models via the introduction of both the diffuse fraction and radiation scalar
Surface solar radiation, both its components and intensity, is pivotal in determining vegetation light use efficiency (LUE) and is essential for accurately estimating gross primary production (GPP) in ecosystems. This study introduces two key parameters: the diffuse photosynthetic photon flux density fraction (fdPPFD) to account for the diffuse fertilization effect (DFE) and the radiation scalar to reflect the impact of radiation intensity on leaf-level LUE. Leveraging these parameters, we developed two novel LUE models: the Big-leaf Diffuse-fraction Radiation-scalar LUE (BDR-LUE) model, adapted from traditional big-leaf LUE models, and the Two-leaf Diffuse-fraction Radiation-scalar LUE (TDR-LUE) model, based on conventional two-leaf LUE frameworks. These models were calibrated and validated using data from 32 FLUXNET sites representing six vegetation types with available diffuse PPFD measurements. The results reveal the following key findings: (1) Both new models, particularly the TDR-LUE model, deliver superior performance compared to conventional big-leaf and two-leaf LUE models; (2) The BDR-LUE model reduces the root mean square error (RMSE) by at least 12.75 % compared to the conventional Eddy Covariance-LUE (EC-LUE) model; (3) The TDR-LUE model achieves an RMSE reduction of at least 13.54 % compared to the established Two-Leaf LUE (TL-LUE) model; (4) Both models effectively capture annual and monthly variations in vegetation GPP; (5) While the BDR-LUE model outperforms the TDR-LUE model for croplands, it shows lower accuracy for other vegetation types. These findings underscore the importance of integrating fdPPFD and the radiation scalar into LUE models. The proposed models demonstrate substantial potential for enhancing GPP estimates in terrestrial ecosystems.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.