Mengyao Wang , Wenxiu Yang , Zhiyuan Zhao , Qi Hao , Xiong Yu , Honghai Wang , Weiyi Su
{"title":"磁场强化D-psicose反溶剂-冷却耦合结晶的研究","authors":"Mengyao Wang , Wenxiu Yang , Zhiyuan Zhao , Qi Hao , Xiong Yu , Honghai Wang , Weiyi Su","doi":"10.1016/j.partic.2025.02.010","DOIUrl":null,"url":null,"abstract":"<div><div>D-psicose is a rare sugar that has currently attracted more attention for its unique functionality and medical potential. It is mainly obtained by converting fructose through DTE or DPE, followed by purification and crystallization steps. In this study, an innovative coupled reverse antisolvent-cooling crystallization process was developed to produce D-psicose with high yield and reasonable crystal size. Specifically, the usage of antisolvent ethanol decreased the viscosity of the whole system, which somehow improved the mass transfer process, while the cooling process ensured the high yield since the solubility of D-psicose was found to drop with temperature. During the study, the coupled process was optimized through response surface methodology, and the yield of 84% was obtained. With the precise regulation to supersaturation, the crystal size was enlarged to 266 μm, which was suitable for downstream filtration, drying etc. To further intensify the industrial productivity, a magnetic field was used throughout to intensify the crystallization process, with which the total crystallization duration was shortened to 50 h from common 70–195 h. It is believable that the new coupled reverse antisolvent-cooling crystallization was advantageous to efficiently produce D-psicose with high quality.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"99 ","pages":"Pages 34-46"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the coupled reverse antisolvent-cooling crystallization of D-psicose intensified by magnetic field\",\"authors\":\"Mengyao Wang , Wenxiu Yang , Zhiyuan Zhao , Qi Hao , Xiong Yu , Honghai Wang , Weiyi Su\",\"doi\":\"10.1016/j.partic.2025.02.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>D-psicose is a rare sugar that has currently attracted more attention for its unique functionality and medical potential. It is mainly obtained by converting fructose through DTE or DPE, followed by purification and crystallization steps. In this study, an innovative coupled reverse antisolvent-cooling crystallization process was developed to produce D-psicose with high yield and reasonable crystal size. Specifically, the usage of antisolvent ethanol decreased the viscosity of the whole system, which somehow improved the mass transfer process, while the cooling process ensured the high yield since the solubility of D-psicose was found to drop with temperature. During the study, the coupled process was optimized through response surface methodology, and the yield of 84% was obtained. With the precise regulation to supersaturation, the crystal size was enlarged to 266 μm, which was suitable for downstream filtration, drying etc. To further intensify the industrial productivity, a magnetic field was used throughout to intensify the crystallization process, with which the total crystallization duration was shortened to 50 h from common 70–195 h. It is believable that the new coupled reverse antisolvent-cooling crystallization was advantageous to efficiently produce D-psicose with high quality.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"99 \",\"pages\":\"Pages 34-46\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S167420012500046X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167420012500046X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Study on the coupled reverse antisolvent-cooling crystallization of D-psicose intensified by magnetic field
D-psicose is a rare sugar that has currently attracted more attention for its unique functionality and medical potential. It is mainly obtained by converting fructose through DTE or DPE, followed by purification and crystallization steps. In this study, an innovative coupled reverse antisolvent-cooling crystallization process was developed to produce D-psicose with high yield and reasonable crystal size. Specifically, the usage of antisolvent ethanol decreased the viscosity of the whole system, which somehow improved the mass transfer process, while the cooling process ensured the high yield since the solubility of D-psicose was found to drop with temperature. During the study, the coupled process was optimized through response surface methodology, and the yield of 84% was obtained. With the precise regulation to supersaturation, the crystal size was enlarged to 266 μm, which was suitable for downstream filtration, drying etc. To further intensify the industrial productivity, a magnetic field was used throughout to intensify the crystallization process, with which the total crystallization duration was shortened to 50 h from common 70–195 h. It is believable that the new coupled reverse antisolvent-cooling crystallization was advantageous to efficiently produce D-psicose with high quality.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.