Sobolev空间中对流形的改进密集类

IF 1.7 2区 数学 Q1 MATHEMATICS
Antoine Detaille
{"title":"Sobolev空间中对流形的改进密集类","authors":"Antoine Detaille","doi":"10.1016/j.jfa.2025.110894","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the strong density problem in the Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>;</mo><mi>N</mi><mo>)</mo></math></span> of maps with values into a compact Riemannian manifold <span><math><mi>N</mi></math></span>. It is known, from the seminal work of Bethuel, that such maps may always be strongly approximated by <span><math><mi>N</mi></math></span>-valued maps that are smooth outside of a finite union of <span><math><mo>(</mo><mi>m</mi><mo>−</mo><mo>⌊</mo><mi>s</mi><mi>p</mi><mo>⌋</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-planes. Our main result establishes the strong density in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>;</mo><mi>N</mi><mo>)</mo></math></span> of an improved version of the class introduced by Bethuel, where the maps have a singular set <em>without crossings</em>. This answers a question raised by Brezis and Mironescu.</div><div>In the special case where <span><math><mi>N</mi></math></span> has a sufficiently simple topology and for some values of <em>s</em> and <em>p</em>, this result was known to follow from the <em>method of projection</em>, which takes its roots in the work of Federer and Fleming. As a first result, we implement this method in the full range of <em>s</em> and <em>p</em> in which it was expected to be applicable. In the case of a general target manifold, we devise a topological argument that allows to remove the self-intersections in the singular set of the maps obtained via Bethuel's technique.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 2","pages":"Article 110894"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved dense class in Sobolev spaces to manifolds\",\"authors\":\"Antoine Detaille\",\"doi\":\"10.1016/j.jfa.2025.110894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the strong density problem in the Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>;</mo><mi>N</mi><mo>)</mo></math></span> of maps with values into a compact Riemannian manifold <span><math><mi>N</mi></math></span>. It is known, from the seminal work of Bethuel, that such maps may always be strongly approximated by <span><math><mi>N</mi></math></span>-valued maps that are smooth outside of a finite union of <span><math><mo>(</mo><mi>m</mi><mo>−</mo><mo>⌊</mo><mi>s</mi><mi>p</mi><mo>⌋</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-planes. Our main result establishes the strong density in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>;</mo><mi>N</mi><mo>)</mo></math></span> of an improved version of the class introduced by Bethuel, where the maps have a singular set <em>without crossings</em>. This answers a question raised by Brezis and Mironescu.</div><div>In the special case where <span><math><mi>N</mi></math></span> has a sufficiently simple topology and for some values of <em>s</em> and <em>p</em>, this result was known to follow from the <em>method of projection</em>, which takes its roots in the work of Federer and Fleming. As a first result, we implement this method in the full range of <em>s</em> and <em>p</em> in which it was expected to be applicable. In the case of a general target manifold, we devise a topological argument that allows to remove the self-intersections in the singular set of the maps obtained via Bethuel's technique.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 2\",\"pages\":\"Article 110894\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362500076X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500076X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑Sobolev空间Ws,p(Qm;N)中具有紧化黎曼流形N的映射的强密度问题。从Bethuel的重要工作中我们知道,这样的映射总是可以被在(m−⌊sp⌋−1)-平面的有限并外光滑的N值映射强逼近。我们的主要结果建立了在Ws,p(Qm;N)上的强密度,这是由Bethuel引入的类的改进版本,其中映射有一个没有交叉的奇异集。这回答了布雷齐斯和米罗内斯库提出的一个问题。在N具有足够简单的拓扑结构的特殊情况下,对于s和p的某些值,这个结果可以从投影方法中得到,它植根于费德勒和弗莱明的工作。作为第一个结果,我们在预期适用的s和p的全范围内实现了该方法。在一般目标流形的情况下,我们设计了一个拓扑论证,允许去除通过Bethuel技术获得的映射的奇异集中的自交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved dense class in Sobolev spaces to manifolds
We consider the strong density problem in the Sobolev space Ws,p(Qm;N) of maps with values into a compact Riemannian manifold N. It is known, from the seminal work of Bethuel, that such maps may always be strongly approximated by N-valued maps that are smooth outside of a finite union of (msp1)-planes. Our main result establishes the strong density in Ws,p(Qm;N) of an improved version of the class introduced by Bethuel, where the maps have a singular set without crossings. This answers a question raised by Brezis and Mironescu.
In the special case where N has a sufficiently simple topology and for some values of s and p, this result was known to follow from the method of projection, which takes its roots in the work of Federer and Fleming. As a first result, we implement this method in the full range of s and p in which it was expected to be applicable. In the case of a general target manifold, we devise a topological argument that allows to remove the self-intersections in the singular set of the maps obtained via Bethuel's technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信