Ricci-DeTurck流的粗糙度量及其在标量曲率问题上的应用

IF 1.7 2区 数学 Q1 MATHEMATICS
Jianchun Chu , Man-Chun Lee
{"title":"Ricci-DeTurck流的粗糙度量及其在标量曲率问题上的应用","authors":"Jianchun Chu ,&nbsp;Man-Chun Lee","doi":"10.1016/j.jfa.2025.110916","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the recent work of Lamm and Simon, in this work we study the short-time existence theory of Ricci-DeTurck flow starting from rough metrics which are bi-Lipschitz and have small local scaling invariant gradient concentration. As applications, we use the Ricci flow smoothing to show that scalar curvature lower bound is preserved under bi-Lipschitz <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msup></math></span> convergence. This is an counter-part of the celebrated work of Gromov and Bamler. We also use similar idea to study stability problems in scalar curvature geometry.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 2","pages":"Article 110916"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ricci-DeTurck flow from rough metrics and applications to scalar curvature problems\",\"authors\":\"Jianchun Chu ,&nbsp;Man-Chun Lee\",\"doi\":\"10.1016/j.jfa.2025.110916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by the recent work of Lamm and Simon, in this work we study the short-time existence theory of Ricci-DeTurck flow starting from rough metrics which are bi-Lipschitz and have small local scaling invariant gradient concentration. As applications, we use the Ricci flow smoothing to show that scalar curvature lower bound is preserved under bi-Lipschitz <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msup></math></span> convergence. This is an counter-part of the celebrated work of Gromov and Bamler. We also use similar idea to study stability problems in scalar curvature geometry.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 2\",\"pages\":\"Article 110916\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625000989\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000989","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受Lamm和Simon最近工作的启发,本文从双lipschitz和具有小局部尺度不变梯度集中的粗糙度量出发,研究Ricci-DeTurck流的短时存在性理论。作为应用,我们利用Ricci流平滑证明了在bi-Lipschitz W1,n收敛下标量曲率下界是保持的。这是格罗莫夫和巴勒的著名作品的对应部分。我们也用类似的思想来研究标量曲率几何中的稳定性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ricci-DeTurck flow from rough metrics and applications to scalar curvature problems
Motivated by the recent work of Lamm and Simon, in this work we study the short-time existence theory of Ricci-DeTurck flow starting from rough metrics which are bi-Lipschitz and have small local scaling invariant gradient concentration. As applications, we use the Ricci flow smoothing to show that scalar curvature lower bound is preserved under bi-Lipschitz W1,n convergence. This is an counter-part of the celebrated work of Gromov and Bamler. We also use similar idea to study stability problems in scalar curvature geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信