P.A. Fasching, C.H. Barrios, E. Lim, S.L. Graff, S. Chia, J.-S. Frenel, S.-A. Im, C.-S. Huang, A. Ring, Z. Nowecki, Q. Liu, M. Akdere, J.P. Zarate, H. Hu, K. Pantoja, J.A O'Shaughnessy
{"title":"P001:使用NATALEE试验数据的HR+/ her2早期乳腺癌(EBC)患者复发风险的预后变量:基于机器学习(ML)模型的分析","authors":"P.A. Fasching, C.H. Barrios, E. Lim, S.L. Graff, S. Chia, J.-S. Frenel, S.-A. Im, C.-S. Huang, A. Ring, Z. Nowecki, Q. Liu, M. Akdere, J.P. Zarate, H. Hu, K. Pantoja, J.A O'Shaughnessy","doi":"10.1016/j.breast.2025.103895","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":9093,"journal":{"name":"Breast","volume":"80 ","pages":"Article 103895"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P001: Prognostic variables for risk of recurrence in patients (pts) with HR+/HER2–early breast cancer (EBC) using data from the NATALEE trial: a machine learning (ML) model–based analysis\",\"authors\":\"P.A. Fasching, C.H. Barrios, E. Lim, S.L. Graff, S. Chia, J.-S. Frenel, S.-A. Im, C.-S. Huang, A. Ring, Z. Nowecki, Q. Liu, M. Akdere, J.P. Zarate, H. Hu, K. Pantoja, J.A O'Shaughnessy\",\"doi\":\"10.1016/j.breast.2025.103895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":9093,\"journal\":{\"name\":\"Breast\",\"volume\":\"80 \",\"pages\":\"Article 103895\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960977625000621\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960977625000621","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
P001: Prognostic variables for risk of recurrence in patients (pts) with HR+/HER2–early breast cancer (EBC) using data from the NATALEE trial: a machine learning (ML) model–based analysis
期刊介绍:
The Breast is an international, multidisciplinary journal for researchers and clinicians, which focuses on translational and clinical research for the advancement of breast cancer prevention, diagnosis and treatment of all stages.