Daniel Vásquez-Antipán , Ivo Fustos-Toribio , José Riffo-López , Ana Cortez-Díaz , Álvaro Bravo , Pablo Moreno-Yaeger
{"title":"智利南安第斯山脉(39°S)反复爆发火山的滑坡过程","authors":"Daniel Vásquez-Antipán , Ivo Fustos-Toribio , José Riffo-López , Ana Cortez-Díaz , Álvaro Bravo , Pablo Moreno-Yaeger","doi":"10.1016/j.jsames.2025.105469","DOIUrl":null,"url":null,"abstract":"<div><div>Landslides are one of the most hazardous geological processes due to their difficult-to-predict nature and destructive effects, often leading to significant loss of life, infrastructure damage, and environmental disruption. In the Southern Andes of Chile, landslides are particularly frequent and destructive due to a combination of factors, including high seismic activity, steep topography, and the presence of weak, unconsolidated pyroclastic soils. Unfortunately, the geomechanical control of landslide initiation in the Southern Andes is still poorly understood, creating a significant source of uncertainty in developing accurate landslide susceptibility or risk models. This study evaluates the geological and geotechnical factors that control the generation of landslides in pyroclastic soils using in situ data, laboratory analysis and remote sensing approaches. The study area covers the surroundings of the Mocho-Choshuenco Volcanic Complex (MCVC), one of the most explosive volcanoes in the Southern Andes. The results show that the landslides are placed on slopes covered by multiple explosive eruptions that include a period of more than 12 ka. Landslide activity is related to pyroclastic soils with significant weathering and halloysite content. In addition, the geotechnical characteristics show very light soils, with high-water retention capacity, which is vital to induce mechanical instability. The detected deformation may be associated with seasonal precipitation that would increase the pore water pressure and reduce the shear strength of the soil, promoting slow-moving landslides. The geological and geotechnical characteristics of the soils suggests that slow-moving landslides would be extended to a large part of the Southern Andes. Finally, this study contributes to improving hazard assessment to mitigate the impact of landslides on the population, infrastructures and natural resources in the Southern Andes.</div></div>","PeriodicalId":50047,"journal":{"name":"Journal of South American Earth Sciences","volume":"157 ","pages":"Article 105469"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landslide processes related to recurrent explosive eruptions in the Southern Andes of Chile (39° S)\",\"authors\":\"Daniel Vásquez-Antipán , Ivo Fustos-Toribio , José Riffo-López , Ana Cortez-Díaz , Álvaro Bravo , Pablo Moreno-Yaeger\",\"doi\":\"10.1016/j.jsames.2025.105469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Landslides are one of the most hazardous geological processes due to their difficult-to-predict nature and destructive effects, often leading to significant loss of life, infrastructure damage, and environmental disruption. In the Southern Andes of Chile, landslides are particularly frequent and destructive due to a combination of factors, including high seismic activity, steep topography, and the presence of weak, unconsolidated pyroclastic soils. Unfortunately, the geomechanical control of landslide initiation in the Southern Andes is still poorly understood, creating a significant source of uncertainty in developing accurate landslide susceptibility or risk models. This study evaluates the geological and geotechnical factors that control the generation of landslides in pyroclastic soils using in situ data, laboratory analysis and remote sensing approaches. The study area covers the surroundings of the Mocho-Choshuenco Volcanic Complex (MCVC), one of the most explosive volcanoes in the Southern Andes. The results show that the landslides are placed on slopes covered by multiple explosive eruptions that include a period of more than 12 ka. Landslide activity is related to pyroclastic soils with significant weathering and halloysite content. In addition, the geotechnical characteristics show very light soils, with high-water retention capacity, which is vital to induce mechanical instability. The detected deformation may be associated with seasonal precipitation that would increase the pore water pressure and reduce the shear strength of the soil, promoting slow-moving landslides. The geological and geotechnical characteristics of the soils suggests that slow-moving landslides would be extended to a large part of the Southern Andes. Finally, this study contributes to improving hazard assessment to mitigate the impact of landslides on the population, infrastructures and natural resources in the Southern Andes.</div></div>\",\"PeriodicalId\":50047,\"journal\":{\"name\":\"Journal of South American Earth Sciences\",\"volume\":\"157 \",\"pages\":\"Article 105469\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of South American Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895981125001312\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of South American Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895981125001312","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Landslide processes related to recurrent explosive eruptions in the Southern Andes of Chile (39° S)
Landslides are one of the most hazardous geological processes due to their difficult-to-predict nature and destructive effects, often leading to significant loss of life, infrastructure damage, and environmental disruption. In the Southern Andes of Chile, landslides are particularly frequent and destructive due to a combination of factors, including high seismic activity, steep topography, and the presence of weak, unconsolidated pyroclastic soils. Unfortunately, the geomechanical control of landslide initiation in the Southern Andes is still poorly understood, creating a significant source of uncertainty in developing accurate landslide susceptibility or risk models. This study evaluates the geological and geotechnical factors that control the generation of landslides in pyroclastic soils using in situ data, laboratory analysis and remote sensing approaches. The study area covers the surroundings of the Mocho-Choshuenco Volcanic Complex (MCVC), one of the most explosive volcanoes in the Southern Andes. The results show that the landslides are placed on slopes covered by multiple explosive eruptions that include a period of more than 12 ka. Landslide activity is related to pyroclastic soils with significant weathering and halloysite content. In addition, the geotechnical characteristics show very light soils, with high-water retention capacity, which is vital to induce mechanical instability. The detected deformation may be associated with seasonal precipitation that would increase the pore water pressure and reduce the shear strength of the soil, promoting slow-moving landslides. The geological and geotechnical characteristics of the soils suggests that slow-moving landslides would be extended to a large part of the Southern Andes. Finally, this study contributes to improving hazard assessment to mitigate the impact of landslides on the population, infrastructures and natural resources in the Southern Andes.
期刊介绍:
Papers must have a regional appeal and should present work of more than local significance. Research papers dealing with the regional geology of South American cratons and mobile belts, within the following research fields:
-Economic geology, metallogenesis and hydrocarbon genesis and reservoirs.
-Geophysics, geochemistry, volcanology, igneous and metamorphic petrology.
-Tectonics, neo- and seismotectonics and geodynamic modeling.
-Geomorphology, geological hazards, environmental geology, climate change in America and Antarctica, and soil research.
-Stratigraphy, sedimentology, structure and basin evolution.
-Paleontology, paleoecology, paleoclimatology and Quaternary geology.
New developments in already established regional projects and new initiatives dealing with the geology of the continent will be summarized and presented on a regular basis. Short notes, discussions, book reviews and conference and workshop reports will also be included when relevant.