Elise Mills , Graeme F. Clark , Matthew J. Simpson , Mark Baird , Matthew P. Adams
{"title":"具有能量依赖的广义s型种群增长模型:用于量化南极浅海底藻类临界点的应用","authors":"Elise Mills , Graeme F. Clark , Matthew J. Simpson , Mark Baird , Matthew P. Adams","doi":"10.1016/j.envsoft.2025.106397","DOIUrl":null,"url":null,"abstract":"<div><div>Sigmoid growth models are often used to study population dynamics. The size of a population at equilibrium commonly depends explicitly on the availability of resources, such as an energy or nutrient source, which is not explicit in standard sigmoid growth models. A simple generalised extension of sigmoid growth models is introduced that can explicitly account for this resource-dependence, demonstrated by three examples of this family of models of increasing mathematical complexity. Each model is calibrated and compared to observed data for algae under sea-ice in Antarctic coastal waters. It was found that through careful construction, models satisfying the proposed framework can estimate key properties of a sea-ice break-out controlled tipping point for the algae, which cannot be estimated using standard sigmoid growth models. The proposed broader family of energy-dependent sigmoid growth models likely has usage in many population growth contexts where resources limit population size.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106397"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalised sigmoid population growth model with energy dependence: Application to quantify the tipping point for Antarctic shallow seabed algae\",\"authors\":\"Elise Mills , Graeme F. Clark , Matthew J. Simpson , Mark Baird , Matthew P. Adams\",\"doi\":\"10.1016/j.envsoft.2025.106397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sigmoid growth models are often used to study population dynamics. The size of a population at equilibrium commonly depends explicitly on the availability of resources, such as an energy or nutrient source, which is not explicit in standard sigmoid growth models. A simple generalised extension of sigmoid growth models is introduced that can explicitly account for this resource-dependence, demonstrated by three examples of this family of models of increasing mathematical complexity. Each model is calibrated and compared to observed data for algae under sea-ice in Antarctic coastal waters. It was found that through careful construction, models satisfying the proposed framework can estimate key properties of a sea-ice break-out controlled tipping point for the algae, which cannot be estimated using standard sigmoid growth models. The proposed broader family of energy-dependent sigmoid growth models likely has usage in many population growth contexts where resources limit population size.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"188 \",\"pages\":\"Article 106397\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225000817\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000817","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A generalised sigmoid population growth model with energy dependence: Application to quantify the tipping point for Antarctic shallow seabed algae
Sigmoid growth models are often used to study population dynamics. The size of a population at equilibrium commonly depends explicitly on the availability of resources, such as an energy or nutrient source, which is not explicit in standard sigmoid growth models. A simple generalised extension of sigmoid growth models is introduced that can explicitly account for this resource-dependence, demonstrated by three examples of this family of models of increasing mathematical complexity. Each model is calibrated and compared to observed data for algae under sea-ice in Antarctic coastal waters. It was found that through careful construction, models satisfying the proposed framework can estimate key properties of a sea-ice break-out controlled tipping point for the algae, which cannot be estimated using standard sigmoid growth models. The proposed broader family of energy-dependent sigmoid growth models likely has usage in many population growth contexts where resources limit population size.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.