减轻TOPCon太阳能电池中污染物引起的表面降解:机制、影响和缓解

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Hongbo Tong , Xinyuan Wu , Xutao Wang , Xinxing Xu , Menglong Guo , Baochen Liao , Sheng Ma , Zhenguo Li , Bram Hoex
{"title":"减轻TOPCon太阳能电池中污染物引起的表面降解:机制、影响和缓解","authors":"Hongbo Tong ,&nbsp;Xinyuan Wu ,&nbsp;Xutao Wang ,&nbsp;Xinxing Xu ,&nbsp;Menglong Guo ,&nbsp;Baochen Liao ,&nbsp;Sheng Ma ,&nbsp;Zhenguo Li ,&nbsp;Bram Hoex","doi":"10.1016/j.solmat.2025.113558","DOIUrl":null,"url":null,"abstract":"<div><div>The tunnel oxide passivated contact (TOPCon) solar cell has become the dominant technology for high-efficiency silicon photovoltaics. Despite its success, TOPCon solar cells face significant reliability challenges under environmental stresses such as damp heat (DH) exposure. In this study, we investigate the degradation mechanisms affecting TOPCon cells, particularly focusing on contamination-induced surface passivation loss, which varies between the front and rear surfaces. Our results show that the rear side of TOPCon cells, in particular the silicon nitride (SiN<sub>x</sub>) layer, is prone to chemical degradation under exposure to sodium-based salts, resulting in a significant loss of open-circuit voltage (V<sub>oc</sub>). Sodium acetate and sodium chloride are found to accelerate surface passivation degradation through enhanced surface oxidation and diffusion of contaminants. We propose a novel approach utilizing a 10 nm aluminum oxide (AlO<sub>x</sub>) barrier layer, deposited through atomic layer deposition (ALD), to mitigate these degradation pathways effectively. Accelerated DH testing demonstrates that this barrier improves the long-term stability of TOPCon solar cells, reducing degradation and maintaining performance over extended periods. This study highlights the importance of surface protection to enhance the durability and operational lifetime of TOPCon solar cells in harsh environments.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113558"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating contaminant-induced surface degradation in TOPCon solar cells: Mechanisms, impacts, and mitigation\",\"authors\":\"Hongbo Tong ,&nbsp;Xinyuan Wu ,&nbsp;Xutao Wang ,&nbsp;Xinxing Xu ,&nbsp;Menglong Guo ,&nbsp;Baochen Liao ,&nbsp;Sheng Ma ,&nbsp;Zhenguo Li ,&nbsp;Bram Hoex\",\"doi\":\"10.1016/j.solmat.2025.113558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tunnel oxide passivated contact (TOPCon) solar cell has become the dominant technology for high-efficiency silicon photovoltaics. Despite its success, TOPCon solar cells face significant reliability challenges under environmental stresses such as damp heat (DH) exposure. In this study, we investigate the degradation mechanisms affecting TOPCon cells, particularly focusing on contamination-induced surface passivation loss, which varies between the front and rear surfaces. Our results show that the rear side of TOPCon cells, in particular the silicon nitride (SiN<sub>x</sub>) layer, is prone to chemical degradation under exposure to sodium-based salts, resulting in a significant loss of open-circuit voltage (V<sub>oc</sub>). Sodium acetate and sodium chloride are found to accelerate surface passivation degradation through enhanced surface oxidation and diffusion of contaminants. We propose a novel approach utilizing a 10 nm aluminum oxide (AlO<sub>x</sub>) barrier layer, deposited through atomic layer deposition (ALD), to mitigate these degradation pathways effectively. Accelerated DH testing demonstrates that this barrier improves the long-term stability of TOPCon solar cells, reducing degradation and maintaining performance over extended periods. This study highlights the importance of surface protection to enhance the durability and operational lifetime of TOPCon solar cells in harsh environments.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"286 \",\"pages\":\"Article 113558\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702482500159X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702482500159X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

隧道氧化物钝化接触(TOPCon)太阳能电池已成为高效硅光伏电池的主导技术。尽管取得了成功,但在湿热(DH)暴露等环境压力下,TOPCon太阳能电池的可靠性面临着重大挑战。在这项研究中,我们研究了影响TOPCon细胞的降解机制,特别关注污染诱导的表面钝化损失,这在前后表面之间是不同的。我们的研究结果表明,TOPCon电池的背面,特别是氮化硅(SiNx)层,在暴露于钠基盐下容易发生化学降解,导致开路电压(Voc)的显著损失。发现醋酸钠和氯化钠通过增强表面氧化和污染物扩散来加速表面钝化降解。我们提出了一种新的方法,利用10 nm的氧化铝(AlOx)阻挡层,通过原子层沉积(ALD)沉积,有效地减轻这些降解途径。加速DH测试表明,这种屏障提高了TOPCon太阳能电池的长期稳定性,减少了退化,并在较长时间内保持了性能。这项研究强调了表面保护对于提高TOPCon太阳能电池在恶劣环境下的耐久性和使用寿命的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitigating contaminant-induced surface degradation in TOPCon solar cells: Mechanisms, impacts, and mitigation

Mitigating contaminant-induced surface degradation in TOPCon solar cells: Mechanisms, impacts, and mitigation
The tunnel oxide passivated contact (TOPCon) solar cell has become the dominant technology for high-efficiency silicon photovoltaics. Despite its success, TOPCon solar cells face significant reliability challenges under environmental stresses such as damp heat (DH) exposure. In this study, we investigate the degradation mechanisms affecting TOPCon cells, particularly focusing on contamination-induced surface passivation loss, which varies between the front and rear surfaces. Our results show that the rear side of TOPCon cells, in particular the silicon nitride (SiNx) layer, is prone to chemical degradation under exposure to sodium-based salts, resulting in a significant loss of open-circuit voltage (Voc). Sodium acetate and sodium chloride are found to accelerate surface passivation degradation through enhanced surface oxidation and diffusion of contaminants. We propose a novel approach utilizing a 10 nm aluminum oxide (AlOx) barrier layer, deposited through atomic layer deposition (ALD), to mitigate these degradation pathways effectively. Accelerated DH testing demonstrates that this barrier improves the long-term stability of TOPCon solar cells, reducing degradation and maintaining performance over extended periods. This study highlights the importance of surface protection to enhance the durability and operational lifetime of TOPCon solar cells in harsh environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信