基于ANN和ANFIS模型的水基MWCNT-ZnO混合纳米流体热物性分析与预测

Q1 Chemical Engineering
Surendra D. Barewar , Pritam S. Kalos , Balaji Bakthavatchalam , Mahesh Joshi , Sarika Patil , Mahesh Sonekar
{"title":"基于ANN和ANFIS模型的水基MWCNT-ZnO混合纳米流体热物性分析与预测","authors":"Surendra D. Barewar ,&nbsp;Pritam S. Kalos ,&nbsp;Balaji Bakthavatchalam ,&nbsp;Mahesh Joshi ,&nbsp;Sarika Patil ,&nbsp;Mahesh Sonekar","doi":"10.1016/j.ijft.2025.101159","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the thermal conductivity and viscosity of multiwalled-carbon nanotubes/zinc oxide water hybrid nanofluid across volume concentrations varying from 0.2 % to 0.8 % and temperatures from 25 °C to 65 °C were experimentally studied. Three mathematical models such as multivariable regression, artificial neural network, and adaptive neuro-fuzzy modeling were employed for the prediction of the thermal conductivity of the water baes multiwalled-carbon nanotubes/zinc oxide hybrid nanofluid. Volume concentration and temperature of the nanofluid are the input parameters for the models. Despite the complexity of the input data, which encompassed extensive ranges of temperature and volume concentration, adaptive neuro-fuzzy modeling exhibited superior predictive performance than the other two models. It achieved conductivity values closely aligned with experimental results, characterized by the lowest mean square error compared to regression and artificial neural network models. Notably, the adaptive neuro-fuzzy modeling method facilitated the resolution of the neural network layer's hidden structure without the need for extensive trial and error.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101159"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and prediction of thermo-physical properties in water-based MWCNT-ZnO hybrid nanofluids using ANN and ANFIS models\",\"authors\":\"Surendra D. Barewar ,&nbsp;Pritam S. Kalos ,&nbsp;Balaji Bakthavatchalam ,&nbsp;Mahesh Joshi ,&nbsp;Sarika Patil ,&nbsp;Mahesh Sonekar\",\"doi\":\"10.1016/j.ijft.2025.101159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the thermal conductivity and viscosity of multiwalled-carbon nanotubes/zinc oxide water hybrid nanofluid across volume concentrations varying from 0.2 % to 0.8 % and temperatures from 25 °C to 65 °C were experimentally studied. Three mathematical models such as multivariable regression, artificial neural network, and adaptive neuro-fuzzy modeling were employed for the prediction of the thermal conductivity of the water baes multiwalled-carbon nanotubes/zinc oxide hybrid nanofluid. Volume concentration and temperature of the nanofluid are the input parameters for the models. Despite the complexity of the input data, which encompassed extensive ranges of temperature and volume concentration, adaptive neuro-fuzzy modeling exhibited superior predictive performance than the other two models. It achieved conductivity values closely aligned with experimental results, characterized by the lowest mean square error compared to regression and artificial neural network models. Notably, the adaptive neuro-fuzzy modeling method facilitated the resolution of the neural network layer's hidden structure without the need for extensive trial and error.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"27 \",\"pages\":\"Article 101159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725001065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725001065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,实验研究了多壁碳纳米管/氧化锌水混合纳米流体在体积浓度从0.2%到0.8%,温度从25°C到65°C范围内的导热性和粘度。采用多变量回归模型、人工神经网络模型和自适应神经模糊模型对水基多壁碳纳米管/氧化锌混合纳米流体的导热系数进行了预测。纳米流体的体积浓度和温度是模型的输入参数。尽管输入数据的复杂性,包括广泛的温度和体积浓度范围,自适应神经模糊模型表现出优于其他两种模型的预测性能。与回归模型和人工神经网络模型相比,该模型获得的电导率值与实验结果非常接近,具有最小的均方误差。值得注意的是,自适应神经模糊建模方法有助于解决神经网络层的隐藏结构,而不需要大量的试验和错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and prediction of thermo-physical properties in water-based MWCNT-ZnO hybrid nanofluids using ANN and ANFIS models
In this study, the thermal conductivity and viscosity of multiwalled-carbon nanotubes/zinc oxide water hybrid nanofluid across volume concentrations varying from 0.2 % to 0.8 % and temperatures from 25 °C to 65 °C were experimentally studied. Three mathematical models such as multivariable regression, artificial neural network, and adaptive neuro-fuzzy modeling were employed for the prediction of the thermal conductivity of the water baes multiwalled-carbon nanotubes/zinc oxide hybrid nanofluid. Volume concentration and temperature of the nanofluid are the input parameters for the models. Despite the complexity of the input data, which encompassed extensive ranges of temperature and volume concentration, adaptive neuro-fuzzy modeling exhibited superior predictive performance than the other two models. It achieved conductivity values closely aligned with experimental results, characterized by the lowest mean square error compared to regression and artificial neural network models. Notably, the adaptive neuro-fuzzy modeling method facilitated the resolution of the neural network layer's hidden structure without the need for extensive trial and error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信