{"title":"二维指数非线性半线性椭圆方程的奇异解","authors":"Yohei Fujishima , Norisuke Ioku , Bernhard Ruf , Elide Terraneo","doi":"10.1016/j.jfa.2025.110922","DOIUrl":null,"url":null,"abstract":"<div><div>By introducing a new classification of the growth rate of exponential functions, singular solutions for <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in 2-dimensions with exponential nonlinearities are constructed. The strategy is to introduce a model nonlinearity “close” to <em>f</em>, which admits an explicit singular solution. Then, using a transformation as in <span><span>[8]</span></span>, one obtains an approximate singular solution, and then one concludes by a suitable fixed point argument. Our method covers a wide class of nonlinearities in a unified way, e.g., <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></msup><mspace></mspace><mo>(</mo><mi>q</mi><mo>></mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>∈</mo><mi>R</mi><mo>)</mo><mo>,</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup></mrow></msup></math></span> (<span><math><mi>q</mi><mo>></mo><mn>1</mn></math></span>, <span><math><mi>q</mi><mo>/</mo><mn>2</mn><mo>></mo><mi>r</mi><mo>></mo><mn>0</mn></math></span> or <span><math><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mn>4</mn></math></span>, <span><math><mi>r</mi><mo>=</mo><mi>q</mi><mo>−</mo><mn>1</mn></math></span>), <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup></mrow></msup></math></span>. As a special case, our result contains a pioneering contribution by Ibrahim–Kikuchi–Nakanishi–Wei <span><span>[15]</span></span> for <span><math><mi>u</mi><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110922"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular solutions of semilinear elliptic equations with exponential nonlinearities in 2-dimensions\",\"authors\":\"Yohei Fujishima , Norisuke Ioku , Bernhard Ruf , Elide Terraneo\",\"doi\":\"10.1016/j.jfa.2025.110922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By introducing a new classification of the growth rate of exponential functions, singular solutions for <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in 2-dimensions with exponential nonlinearities are constructed. The strategy is to introduce a model nonlinearity “close” to <em>f</em>, which admits an explicit singular solution. Then, using a transformation as in <span><span>[8]</span></span>, one obtains an approximate singular solution, and then one concludes by a suitable fixed point argument. Our method covers a wide class of nonlinearities in a unified way, e.g., <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></msup><mspace></mspace><mo>(</mo><mi>q</mi><mo>></mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>∈</mo><mi>R</mi><mo>)</mo><mo>,</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup></mrow></msup></math></span> (<span><math><mi>q</mi><mo>></mo><mn>1</mn></math></span>, <span><math><mi>q</mi><mo>/</mo><mn>2</mn><mo>></mo><mi>r</mi><mo>></mo><mn>0</mn></math></span> or <span><math><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mn>4</mn></math></span>, <span><math><mi>r</mi><mo>=</mo><mi>q</mi><mo>−</mo><mn>1</mn></math></span>), <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup></mrow></msup></math></span>. As a special case, our result contains a pioneering contribution by Ibrahim–Kikuchi–Nakanishi–Wei <span><span>[15]</span></span> for <span><math><mi>u</mi><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 1\",\"pages\":\"Article 110922\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001041\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001041","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Singular solutions of semilinear elliptic equations with exponential nonlinearities in 2-dimensions
By introducing a new classification of the growth rate of exponential functions, singular solutions for in 2-dimensions with exponential nonlinearities are constructed. The strategy is to introduce a model nonlinearity “close” to f, which admits an explicit singular solution. Then, using a transformation as in [8], one obtains an approximate singular solution, and then one concludes by a suitable fixed point argument. Our method covers a wide class of nonlinearities in a unified way, e.g., (, or , ), . As a special case, our result contains a pioneering contribution by Ibrahim–Kikuchi–Nakanishi–Wei [15] for .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis