二维指数非线性半线性椭圆方程的奇异解

IF 1.7 2区 数学 Q1 MATHEMATICS
Yohei Fujishima , Norisuke Ioku , Bernhard Ruf , Elide Terraneo
{"title":"二维指数非线性半线性椭圆方程的奇异解","authors":"Yohei Fujishima ,&nbsp;Norisuke Ioku ,&nbsp;Bernhard Ruf ,&nbsp;Elide Terraneo","doi":"10.1016/j.jfa.2025.110922","DOIUrl":null,"url":null,"abstract":"<div><div>By introducing a new classification of the growth rate of exponential functions, singular solutions for <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in 2-dimensions with exponential nonlinearities are constructed. The strategy is to introduce a model nonlinearity “close” to <em>f</em>, which admits an explicit singular solution. Then, using a transformation as in <span><span>[8]</span></span>, one obtains an approximate singular solution, and then one concludes by a suitable fixed point argument. Our method covers a wide class of nonlinearities in a unified way, e.g., <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></msup><mspace></mspace><mo>(</mo><mi>q</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>∈</mo><mi>R</mi><mo>)</mo><mo>,</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup></mrow></msup></math></span> (<span><math><mi>q</mi><mo>&gt;</mo><mn>1</mn></math></span>, <span><math><mi>q</mi><mo>/</mo><mn>2</mn><mo>&gt;</mo><mi>r</mi><mo>&gt;</mo><mn>0</mn></math></span> or <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mn>4</mn></math></span>, <span><math><mi>r</mi><mo>=</mo><mi>q</mi><mo>−</mo><mn>1</mn></math></span>), <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup></mrow></msup></math></span>. As a special case, our result contains a pioneering contribution by Ibrahim–Kikuchi–Nakanishi–Wei <span><span>[15]</span></span> for <span><math><mi>u</mi><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110922"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular solutions of semilinear elliptic equations with exponential nonlinearities in 2-dimensions\",\"authors\":\"Yohei Fujishima ,&nbsp;Norisuke Ioku ,&nbsp;Bernhard Ruf ,&nbsp;Elide Terraneo\",\"doi\":\"10.1016/j.jfa.2025.110922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By introducing a new classification of the growth rate of exponential functions, singular solutions for <span><math><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> in 2-dimensions with exponential nonlinearities are constructed. The strategy is to introduce a model nonlinearity “close” to <em>f</em>, which admits an explicit singular solution. Then, using a transformation as in <span><span>[8]</span></span>, one obtains an approximate singular solution, and then one concludes by a suitable fixed point argument. Our method covers a wide class of nonlinearities in a unified way, e.g., <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></msup><mspace></mspace><mo>(</mo><mi>q</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo><mi>r</mi><mo>∈</mo><mi>R</mi><mo>)</mo><mo>,</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup></mrow></msup></math></span> (<span><math><mi>q</mi><mo>&gt;</mo><mn>1</mn></math></span>, <span><math><mi>q</mi><mo>/</mo><mn>2</mn><mo>&gt;</mo><mi>r</mi><mo>&gt;</mo><mn>0</mn></math></span> or <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mn>4</mn></math></span>, <span><math><mi>r</mi><mo>=</mo><mi>q</mi><mo>−</mo><mn>1</mn></math></span>), <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup></mrow></msup></math></span>. As a special case, our result contains a pioneering contribution by Ibrahim–Kikuchi–Nakanishi–Wei <span><span>[15]</span></span> for <span><math><mi>u</mi><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 1\",\"pages\":\"Article 110922\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001041\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001041","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过引入指数函数增长率的一种新分类,构造了二维指数非线性−Δu=f(u)的奇异解。该策略是引入一个“接近”于f的非线性模型,该模型允许显式奇异解。然后,利用[8]中的变换,得到一个近似的奇异解,并得到一个合适的不动点参数。我们的方法统一地涵盖了广泛的非线性问题,如f(u)=ureuq(q>1,r∈r),f(u)=euq+ur (q>1, q/2>r>;0或1<;q<4, r=q−1),f(u)=eeu。作为特例,我们的结果包含了Ibrahim-Kikuchi-Nakanishi-Wei对u(eu2−1)的开创性贡献[15]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular solutions of semilinear elliptic equations with exponential nonlinearities in 2-dimensions
By introducing a new classification of the growth rate of exponential functions, singular solutions for Δu=f(u) in 2-dimensions with exponential nonlinearities are constructed. The strategy is to introduce a model nonlinearity “close” to f, which admits an explicit singular solution. Then, using a transformation as in [8], one obtains an approximate singular solution, and then one concludes by a suitable fixed point argument. Our method covers a wide class of nonlinearities in a unified way, e.g., f(u)=ureuq(q>1,rR),f(u)=euq+ur (q>1, q/2>r>0 or 1<q<4, r=q1), f(u)=eeu. As a special case, our result contains a pioneering contribution by Ibrahim–Kikuchi–Nakanishi–Wei [15] for u(eu21).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信