Ruxia Ning, Chi Feng, Fenglun Zhang, Shiyu Zong and Jianxin Jiang*,
{"title":"超高保湿性羧甲基罗望子木葡聚糖的合成、表征及其在化妆品中的应用前景","authors":"Ruxia Ning, Chi Feng, Fenglun Zhang, Shiyu Zong and Jianxin Jiang*, ","doi":"10.1021/acs.biomac.4c0145310.1021/acs.biomac.4c01453","DOIUrl":null,"url":null,"abstract":"<p >Carboxymethyl tamarind xyloglucan (CMTXG) was synthesized by xyloglucan with sodium chloroacetate in 50% ethanol. The effects of carboxymethylation on the structure and properties of xyloglucan were studied, and its application potential in cosmetics was evaluated. The results showed that carboxymethylation increased the molecular weight, enhanced water solubility and stability, decreased apparent viscosity, and promoted xyloglucan’s application in cosmetics. The CMTXG with moderate substitution (CMT-M) exhibited superior hygroscopic and moisturizing effects, indicating that CMTXG does not need to pursue high degree of substitution. The moisturizing rate of CMT-M was 81.08% after 12 h, surpassing that of sodium hyaluronate (55.79%) and glycerin (59.52%). The CMT-M exhibited enhanced antioxidant and antibacterial activity after modification. Toxicity assessment indicated that CMT-M can improve the long-term tolerance of larvae zebrafish. Furthermore, the CMT-M cream demonstrated a long-term moisturizing effect compared to commercial creams. The research findings are expected to provide an effective bioactive moisturizer candidate for the daily chemical industry.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 3","pages":"1647–1658 1647–1658"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Superhigh Moisturizing Carboxymethyl Tamarind Xyloglucan and Its Potential Application in Cosmetics\",\"authors\":\"Ruxia Ning, Chi Feng, Fenglun Zhang, Shiyu Zong and Jianxin Jiang*, \",\"doi\":\"10.1021/acs.biomac.4c0145310.1021/acs.biomac.4c01453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carboxymethyl tamarind xyloglucan (CMTXG) was synthesized by xyloglucan with sodium chloroacetate in 50% ethanol. The effects of carboxymethylation on the structure and properties of xyloglucan were studied, and its application potential in cosmetics was evaluated. The results showed that carboxymethylation increased the molecular weight, enhanced water solubility and stability, decreased apparent viscosity, and promoted xyloglucan’s application in cosmetics. The CMTXG with moderate substitution (CMT-M) exhibited superior hygroscopic and moisturizing effects, indicating that CMTXG does not need to pursue high degree of substitution. The moisturizing rate of CMT-M was 81.08% after 12 h, surpassing that of sodium hyaluronate (55.79%) and glycerin (59.52%). The CMT-M exhibited enhanced antioxidant and antibacterial activity after modification. Toxicity assessment indicated that CMT-M can improve the long-term tolerance of larvae zebrafish. Furthermore, the CMT-M cream demonstrated a long-term moisturizing effect compared to commercial creams. The research findings are expected to provide an effective bioactive moisturizer candidate for the daily chemical industry.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 3\",\"pages\":\"1647–1658 1647–1658\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biomac.4c01453\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.4c01453","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthesis and Characterization of Superhigh Moisturizing Carboxymethyl Tamarind Xyloglucan and Its Potential Application in Cosmetics
Carboxymethyl tamarind xyloglucan (CMTXG) was synthesized by xyloglucan with sodium chloroacetate in 50% ethanol. The effects of carboxymethylation on the structure and properties of xyloglucan were studied, and its application potential in cosmetics was evaluated. The results showed that carboxymethylation increased the molecular weight, enhanced water solubility and stability, decreased apparent viscosity, and promoted xyloglucan’s application in cosmetics. The CMTXG with moderate substitution (CMT-M) exhibited superior hygroscopic and moisturizing effects, indicating that CMTXG does not need to pursue high degree of substitution. The moisturizing rate of CMT-M was 81.08% after 12 h, surpassing that of sodium hyaluronate (55.79%) and glycerin (59.52%). The CMT-M exhibited enhanced antioxidant and antibacterial activity after modification. Toxicity assessment indicated that CMT-M can improve the long-term tolerance of larvae zebrafish. Furthermore, the CMT-M cream demonstrated a long-term moisturizing effect compared to commercial creams. The research findings are expected to provide an effective bioactive moisturizer candidate for the daily chemical industry.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.