多振子局部共振地震超材料研究及宽带瑞利波衰减均匀梯度设计

IF 1.9 4区 工程技术 Q3 MECHANICS
Weikai Xu, Hongyang Sun, Hong Hai, Wei Wang, Chunli Zhou
{"title":"多振子局部共振地震超材料研究及宽带瑞利波衰减均匀梯度设计","authors":"Weikai Xu,&nbsp;Hongyang Sun,&nbsp;Hong Hai,&nbsp;Wei Wang,&nbsp;Chunli Zhou","doi":"10.1007/s00161-025-01368-x","DOIUrl":null,"url":null,"abstract":"<div><p>The dimensions of seismic metamaterials pose limitations that make attenuating ultra-low frequency seismic surface waves (with a starting frequency near 0 Hz) in confined spaces through structural design a significant challenge. This paper introduces a locally resonant seismic metamaterial (SM) characterized by an ultra-low frequency wide bandgap, created by placing a nylon barrier embedded with steel oscillators between two steel plates. The bandgap is calculated using dispersion analysis and phononic crystals method, delineating the attenuation range of the seismic metamaterial. Parameter analysis results show that greater oscillator mass, thinner nylon barrier thickness, and higher external barrier height favor broader bandgap width and reduced bandgap frequency. By introducing the concept of multiple oscillators and “uniform and gradient,” the isolation performance of the SM is significantly enhanced, while the impact of the Fano-like phenomenon on attenuation is simultaneously reduced. This indicates that multi-oscillator and “uniform and gradient” are ideal solutions for opening ultra-low frequency bandgaps. Finally, the dynamic response of the SM is clarified through time-domain analysis, further validating the effectiveness of the research. We hope that this study can promote the engineering application of common building materials in the shielding of deep subwave length frequency seismic waves.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on multi-oscillator locally resonant seismic metamaterials and the uniform and gradient design for broadband Rayleigh wave attenuation\",\"authors\":\"Weikai Xu,&nbsp;Hongyang Sun,&nbsp;Hong Hai,&nbsp;Wei Wang,&nbsp;Chunli Zhou\",\"doi\":\"10.1007/s00161-025-01368-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dimensions of seismic metamaterials pose limitations that make attenuating ultra-low frequency seismic surface waves (with a starting frequency near 0 Hz) in confined spaces through structural design a significant challenge. This paper introduces a locally resonant seismic metamaterial (SM) characterized by an ultra-low frequency wide bandgap, created by placing a nylon barrier embedded with steel oscillators between two steel plates. The bandgap is calculated using dispersion analysis and phononic crystals method, delineating the attenuation range of the seismic metamaterial. Parameter analysis results show that greater oscillator mass, thinner nylon barrier thickness, and higher external barrier height favor broader bandgap width and reduced bandgap frequency. By introducing the concept of multiple oscillators and “uniform and gradient,” the isolation performance of the SM is significantly enhanced, while the impact of the Fano-like phenomenon on attenuation is simultaneously reduced. This indicates that multi-oscillator and “uniform and gradient” are ideal solutions for opening ultra-low frequency bandgaps. Finally, the dynamic response of the SM is clarified through time-domain analysis, further validating the effectiveness of the research. We hope that this study can promote the engineering application of common building materials in the shielding of deep subwave length frequency seismic waves.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"37 2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-025-01368-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-025-01368-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

地震超材料的尺寸限制了通过结构设计在密闭空间中衰减超低频率地震表面波(起始频率接近0 Hz)的难度。本文介绍了一种局部共振地震超材料(SM),其特点是超低频宽带隙,通过在两片钢板之间放置嵌入钢振子的尼龙屏障而产生。利用色散分析和声子晶体法计算了带隙,描绘了地震超材料的衰减范围。参数分析结果表明,较大的振子质量、较薄的尼龙势垒厚度和较高的外势垒高度有利于增大带隙宽度和降低带隙频率。通过引入多振子和“均匀梯度”的概念,SM的隔离性能得到了显著提高,同时减少了法诺现象对衰减的影响。这表明多振荡器和“均匀梯度”是打开超低频带隙的理想解决方案。最后,通过时域分析明确了SM的动态响应,进一步验证了研究的有效性。希望本研究能够促进普通建筑材料在深亚波长频率地震波屏蔽中的工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Research on multi-oscillator locally resonant seismic metamaterials and the uniform and gradient design for broadband Rayleigh wave attenuation

Research on multi-oscillator locally resonant seismic metamaterials and the uniform and gradient design for broadband Rayleigh wave attenuation

The dimensions of seismic metamaterials pose limitations that make attenuating ultra-low frequency seismic surface waves (with a starting frequency near 0 Hz) in confined spaces through structural design a significant challenge. This paper introduces a locally resonant seismic metamaterial (SM) characterized by an ultra-low frequency wide bandgap, created by placing a nylon barrier embedded with steel oscillators between two steel plates. The bandgap is calculated using dispersion analysis and phononic crystals method, delineating the attenuation range of the seismic metamaterial. Parameter analysis results show that greater oscillator mass, thinner nylon barrier thickness, and higher external barrier height favor broader bandgap width and reduced bandgap frequency. By introducing the concept of multiple oscillators and “uniform and gradient,” the isolation performance of the SM is significantly enhanced, while the impact of the Fano-like phenomenon on attenuation is simultaneously reduced. This indicates that multi-oscillator and “uniform and gradient” are ideal solutions for opening ultra-low frequency bandgaps. Finally, the dynamic response of the SM is clarified through time-domain analysis, further validating the effectiveness of the research. We hope that this study can promote the engineering application of common building materials in the shielding of deep subwave length frequency seismic waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
15.40%
发文量
92
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena. Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信