枯草芽孢杆菌条件性高突变体的突变景观显示了校对如何扭曲 DNA 聚合酶的错误率

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ira Tanneur, Etienne Dervyn, Cyprien Guérin, Guillaume Kon Kam King, Matthieu Jules, Pierre Nicolas
{"title":"枯草芽孢杆菌条件性高突变体的突变景观显示了校对如何扭曲 DNA 聚合酶的错误率","authors":"Ira Tanneur, Etienne Dervyn, Cyprien Guérin, Guillaume Kon Kam King, Matthieu Jules, Pierre Nicolas","doi":"10.1093/nar/gkaf147","DOIUrl":null,"url":null,"abstract":"Polymerase errors during DNA replication are a major source of point mutations in genomes. The spontaneous mutation rate also depends on the counteracting activity of DNA repair mechanisms, with mutator phenotypes appearing constantly and allowing for periods of rapid evolution in nature and in the laboratory. Here, we use the Gram-positive model bacterium Bacillus subtilis to disentangle the contributions of DNA polymerase initial nucleotide selectivity, DNA polymerase proofreading, and mismatch repair (MMR) to the mutation rate. To achieve this, we constructed several conditional hypermutators with a proofreading-deficient allele of polC and/or a deficient allele of mutL and performed mutation accumulation experiments. These conditional hypermutators enrich the B. subtilis synthetic biology toolbox for directed evolution. Using mathematical models, we investigated how to interpret the apparent probabilities with which errors escape MMR and proofreading, highlighting the difficulties of working with counts that aggregate potentially heterogeneous mutations and with unknowns about the pathways leading to mutations in the wild-type. Aware of these difficulties, the analysis shows that proofreading prevents partial saturation of the MMR in B. subtilis and that an inherent drawback of proofreading is to skew the net polymerase error rates by amplifying intrinsic biases in nucleotide selectivity.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"91 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mutational landscape of Bacillus subtilis conditional hypermutators shows how proofreading skews DNA polymerase error rates\",\"authors\":\"Ira Tanneur, Etienne Dervyn, Cyprien Guérin, Guillaume Kon Kam King, Matthieu Jules, Pierre Nicolas\",\"doi\":\"10.1093/nar/gkaf147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymerase errors during DNA replication are a major source of point mutations in genomes. The spontaneous mutation rate also depends on the counteracting activity of DNA repair mechanisms, with mutator phenotypes appearing constantly and allowing for periods of rapid evolution in nature and in the laboratory. Here, we use the Gram-positive model bacterium Bacillus subtilis to disentangle the contributions of DNA polymerase initial nucleotide selectivity, DNA polymerase proofreading, and mismatch repair (MMR) to the mutation rate. To achieve this, we constructed several conditional hypermutators with a proofreading-deficient allele of polC and/or a deficient allele of mutL and performed mutation accumulation experiments. These conditional hypermutators enrich the B. subtilis synthetic biology toolbox for directed evolution. Using mathematical models, we investigated how to interpret the apparent probabilities with which errors escape MMR and proofreading, highlighting the difficulties of working with counts that aggregate potentially heterogeneous mutations and with unknowns about the pathways leading to mutations in the wild-type. Aware of these difficulties, the analysis shows that proofreading prevents partial saturation of the MMR in B. subtilis and that an inherent drawback of proofreading is to skew the net polymerase error rates by amplifying intrinsic biases in nucleotide selectivity.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf147\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf147","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mutational landscape of Bacillus subtilis conditional hypermutators shows how proofreading skews DNA polymerase error rates
Polymerase errors during DNA replication are a major source of point mutations in genomes. The spontaneous mutation rate also depends on the counteracting activity of DNA repair mechanisms, with mutator phenotypes appearing constantly and allowing for periods of rapid evolution in nature and in the laboratory. Here, we use the Gram-positive model bacterium Bacillus subtilis to disentangle the contributions of DNA polymerase initial nucleotide selectivity, DNA polymerase proofreading, and mismatch repair (MMR) to the mutation rate. To achieve this, we constructed several conditional hypermutators with a proofreading-deficient allele of polC and/or a deficient allele of mutL and performed mutation accumulation experiments. These conditional hypermutators enrich the B. subtilis synthetic biology toolbox for directed evolution. Using mathematical models, we investigated how to interpret the apparent probabilities with which errors escape MMR and proofreading, highlighting the difficulties of working with counts that aggregate potentially heterogeneous mutations and with unknowns about the pathways leading to mutations in the wild-type. Aware of these difficulties, the analysis shows that proofreading prevents partial saturation of the MMR in B. subtilis and that an inherent drawback of proofreading is to skew the net polymerase error rates by amplifying intrinsic biases in nucleotide selectivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信