Salvatore Di Marco, Jana Aupič, Giovanni Bussi, Alessandra Magistrato
{"title":"全原子模拟阐明rna -膜相互作用的分子机制","authors":"Salvatore Di Marco, Jana Aupič, Giovanni Bussi, Alessandra Magistrato","doi":"10.1021/acs.nanolett.5c01254","DOIUrl":null,"url":null,"abstract":"RNA–membrane interactions are starting to emerge as an important organizing force in both natural and synthetic biological systems. Notably, RNA molecules were recently discovered to be present on the extracellular surface of living cells, where they mediate intercellular signaling. Furthermore, RNA–membrane interactions influence the efficacy of lipid-based RNA delivery systems. However, the molecular terms driving RNA localization at the membrane remain poorly understood. In this work, we investigate how RNAs bind and interact with phospholipid membranes via all-atom simulations. We find that among RNA nucleobases guanine exhibits the most favorable membrane binding free energy due to extensive hydrogen bond formation. Additionally, we show that intra-RNA base pairing, present in organized RNA structures, significantly hinders RNA–membrane binding. Elucidating the molecular details of RNA–membrane association will importantly contribute to improving the design of RNA-based drugs as well as lipid-based RNA delivery systems and to parsing out RNA transport and localization mechanisms.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"31 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-Atom Simulations Elucidate the Molecular Mechanism Underlying RNA–Membrane Interactions\",\"authors\":\"Salvatore Di Marco, Jana Aupič, Giovanni Bussi, Alessandra Magistrato\",\"doi\":\"10.1021/acs.nanolett.5c01254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA–membrane interactions are starting to emerge as an important organizing force in both natural and synthetic biological systems. Notably, RNA molecules were recently discovered to be present on the extracellular surface of living cells, where they mediate intercellular signaling. Furthermore, RNA–membrane interactions influence the efficacy of lipid-based RNA delivery systems. However, the molecular terms driving RNA localization at the membrane remain poorly understood. In this work, we investigate how RNAs bind and interact with phospholipid membranes via all-atom simulations. We find that among RNA nucleobases guanine exhibits the most favorable membrane binding free energy due to extensive hydrogen bond formation. Additionally, we show that intra-RNA base pairing, present in organized RNA structures, significantly hinders RNA–membrane binding. Elucidating the molecular details of RNA–membrane association will importantly contribute to improving the design of RNA-based drugs as well as lipid-based RNA delivery systems and to parsing out RNA transport and localization mechanisms.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01254\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01254","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
All-Atom Simulations Elucidate the Molecular Mechanism Underlying RNA–Membrane Interactions
RNA–membrane interactions are starting to emerge as an important organizing force in both natural and synthetic biological systems. Notably, RNA molecules were recently discovered to be present on the extracellular surface of living cells, where they mediate intercellular signaling. Furthermore, RNA–membrane interactions influence the efficacy of lipid-based RNA delivery systems. However, the molecular terms driving RNA localization at the membrane remain poorly understood. In this work, we investigate how RNAs bind and interact with phospholipid membranes via all-atom simulations. We find that among RNA nucleobases guanine exhibits the most favorable membrane binding free energy due to extensive hydrogen bond formation. Additionally, we show that intra-RNA base pairing, present in organized RNA structures, significantly hinders RNA–membrane binding. Elucidating the molecular details of RNA–membrane association will importantly contribute to improving the design of RNA-based drugs as well as lipid-based RNA delivery systems and to parsing out RNA transport and localization mechanisms.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.